

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2016

CH 2816 - THERMODYNAMICS AND STATISTICAL MECHANICS

Date: 22-04-2016	Dept. No.	Max.: 100 Marks
Time: 01:00-04:00	l	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. What are partial molal properties?
- 2. Calculate the ionic strength of 0.05 M NaCl.
- 3. Define activity coefficient.
- 4. Mention the importance of tie line.
- 5. What are Bosons and Fermions?
- 6. Define internal entropy production.
- 7. What is most probable distribution?
- 8. What are azeotropic mixtures?
- 9. Prove that the electronic partition function for H_2 is unity.
- 10. Calculate the ground state nuclear energy level for para hydrogen.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. How is the rate constant of a reaction evaluated using statistical mechanics?
- 12. Calculate the vibrational contribution to the entropy of F₂ molecules at 25 °C. Given that the fundamental vibrational frequency is 892.1 cm⁻¹.
- 13. Discuss the effect of temperature on equilibrium constant.
- 14. Calculate the chemical potential, over and above the standard chemical potential, of N_2 present in a mixture where the partial pressure is 2 atm.
- 15. Write a note on the fractional distillation of binary liquid solutions.
- 16. Explain thermo mechanical effects with an example.
- 17. What is residual entropy? Mention its significance.
- 18. State Stirling's theorem and prove that it is applicable only to a collection of large number of particles.
- 19. Mention the assumptions of Einstein's theory of molar heat capacity of solids.
- 20. Derive Sackure-Tetrode equation and mention its significance.
- 21. Derive Maxwell-Boltzmann distribution law using its assumptions.
- 22. Prove that carbon is a good reducing agent for several metal oxides.

Part-C

Answer any FOUR questions.	$(4 \times 10 = 40)$	
23a. Derive Gibbs-Duhem equation and mention its significance.	(6)	
b. Calculate the fugacity of H ₂ at 100 °C and 300 atm. The density of H ₂ at the above co	ndition is 16.79	
g/dm^3 .	(4)	
24a. Derive the relation between partition function and energy.		
b. Explain flux-force concept with an example.	(5)	
25a. Explain the different types of phenomenological coefficients. Mention their significance.		
b. What is dissipation function? Mention its unit.	(4)	
26a. Obtain van't Hoff equation to illustrate the temperature dependence of equilibrium constant		
b.Mention the importance of Onsager reciprocal relationship.	(4)	
27. Discuss the variation of chemical potential with temperature and pressure.		
28a. Describe the phase diagram of a two component system and obtain the degrees of free	dom for all the	
regions.	(6)	
b. State and explain Lever Rule.	(4)	
