LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - APRIL 2016

CH 3809 - COORDINATION CHEMISTRY

Time: 09:00-12:00	Date: 26-04-2016 Time: 09:00-12:00	Dept. No.		Max.: 100 Marks
-------------------	---------------------------------------	-----------	--	-----------------

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. How does crystal field theory support the formation of high and low spin complexes?
- 2. Why do d⁸ metal ions form square planar complexes?
- 3. Derive the ground state term symbol for d² electronic configuration
- 4. What is Curie's law of magnetic interaction?
- 5. How many bands are expected in the electronic spectrum of $[V(H_2O)_6]^{3+}$?
- 6. Why is CN considered as a strong field ligand?
- 7. How do IR spectra of terminal and bridging carbonyls differ?
- 8. What is Wilkinson's catalyst? Mention its application.
- 9. Give an example for electron exchange reaction.
- 10. What are copper proteins? Mention their specific roles.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. How do the d-orbitals split up in tetrahedral environment of ligands?
- 12. How does crystal field theory support the variation of ionic radii of first row transition elements.
- 13. Explain the variations in the stretching frequency of
 - (i) $Cr(CO)_6$ (ii) $[V(CO)_6]^-$ (iii) $[Mn(CO)_6]^+$
- 14. Explain oxidative addition reaction of metal complexes with an example.
- 15. Predict whether the octahedral, d⁴ and d⁷ metal complexes possess only spin magnetic moment or spin and orbital magnetic moment.
- 16. Write a brief note on the types of reaction in metal complexes.
- 17. How does ORD study help in determining the absolute configuration of metal complexes?
- 18. What is trans effect? Explain its synthetic applications.
- 19. Explain double and triple decker complexes. Give an example,
- 20. Draw the structure of [Ni(dmg)₂]. Why this complex formed only in weakly basic medium?
- 21. Discuss the biological role of carboxypeptidase A.
- 22 a. Why is CrO_4^{2-} ion, a d^0 complex coloured?
 - b. Why is the rate of the reaction slow between $[Co(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{2+}$ slow?

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23. How does MO theory support the order of halo ligands in the spectrochemical series?
- 24. What is Jahn-Teller effect? How does crystal field theory help in predicting distortion of the octahedral geometry of d¹⁻¹⁰ configuration?
- 25. Discuss the features of Orgel diagram and Tanabe-Sugano diagram.
- 26. Discuss the principle involved in characterizing the EPR spectrum of [Cu(salen)₂]⁺ complex.
- 27. Give a detailed account of inner- and outer sphere electron transfer mechanisms followed by coordination compounds.
- 28. Discuss the cooperativity behaviour in the mechanism of oxygen transport by haemoglobin.
