

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2016

CH 4807 - CHEMICAL KINETICS

Date: 25-04-2016	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00	L	

Part - A

Answer all the questions $(10 \times 2 = 20)$

- 1. Define orientation factor of a reaction based on collision theory.
- 2. The rate constant for a second order reaction is $3.33 \times 10^{-2} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. Calculate its half-life if the initial concentration of the reactant is 0.05 mol dm^{-3} .
- 3. Write the limitations of collision theory of reactions.
- 4. Distinguish between time and true order of a reaction.
- 5. What is electrostriction?
- 6. Why are conventional techniques not useful to study fast reactions?
- 7. Calculate the t_{max} for a consecutive reaction, $A \rightarrow B \rightarrow C$ with rate constants of 0.3 min⁻¹ and 0.2 min⁻¹ for the first and second steps respectively.
- 8. Define degree of inhibition.
- 9. What is the effect of pH on an enzymatic reaction?
- 10. How are the kinetic parameters evaluated for an enzymatic reaction by Lineweaver-Burk plot?

Part - B

Answer any **eight** questions.

 $(8 \times 5 = 40)$

- 11. The pre-exponential term for a unimolecular gaseous reaction occurring at 300 °C is 3.98×10^{13} s⁻¹ and the energy of activation for this reaction at this temperature is 170 kJmol⁻¹. Determine $\Delta^{\neq}H$ and $\Delta^{\neq}S$ for the reaction.
- 12. Describe any one method for the determination of order of a reaction.
- 13.Using appropriate diagrams discuss the role of potential energy surfaces in reaction kinetics.
- 14. Explain the double sphere model for the influence of dielectric constant on the rate of an reaction in solution.
- 15. Show that Hammett equation is a form of linear free energy relationship.
- 16. For a weak base, 2-nitroaniline (B) in 0.02 M HClO_4 , the ratio of [BH⁺] to [B] is found to be 0.01. Calculate pK_{BH+} for 2-nitroanilinium ion.
- 17. Discuss the mechanism of reversible enzyme inhibition reactions.
- 18. Explain flash photolysis technique to study the kinetics of fast reactions.
- 19. Discuss the kinetics of thermal decomposition of acetaldehyde.
- 20. Derive Eyring equation connecting rate constant and partition functions of reactants.
- 21. Write the salient features of Langmuir-Hinshelwood mechanism for the surface catalysed reactions.
- 22. Derive the expressions for the concentrations of reactants and products for a first order parallel reaction at time 't'.

Answer any four questions.

 $(4 \times 10 = 40)$

- 23 a. Explain the kinetics of unimolecular gas phase reaction with relevant derivation.
 - b. Bodenstein studied the kinetics of decomposition of gaseous hydrogen iodide and gave the values of specific reaction rates to be 3.52×10^{-7} and 3.96×10^{-2} dm³ mol⁻¹ s⁻¹ at 556 and 781 K respectively. Calculate the energy of activation and frequency factor of the reaction. (5+5)
- 24 a. Predict the effect of increasing ionic strength on rates of the following reactions and estimate the sign of Δ^{\neq} S in each case.

$$[Co(NH_3)_5C1]^{2+} + OH^- \rightarrow [Co(NH_3)_5OH]^{2+} + CI^-$$

$$CH_3Br + H_2O \rightarrow CH_3OH + H^+ + Br^-$$

- b. Discuss the factors determining rate of a reaction in solution. (6+4)
- 25 a. Differentiate Arrehenius and van't Hoff type intermediates.
 - b. Explain the importance of Skrabal plots in acid-base catalysis. (5+5)
- 26 a. Discuss the kinetic scheme for a quenching reaction and derive Stern-Volmer equation.
 - b. Write BET equation and mention the parameters in it. (7+3)
- 27 a. Explain the kinetics of single substrate enzymatic reaction.
 - b. The protein catalase that catalyses the decomposition of hydrogen peroxide has K_M and turnover number of 25×10^{-3} mol L^{-1} and 4×10^7 s⁻¹ respectively. Calculate the maximum rate of the reaction if the total enzyme concentration is 1.6×10^{-8} M. (7+3)
- 28. Discuss the kinetics of branching chain reactions in detail.
