LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2016

CH 4814 / CH 4808 - ELECTROCHEMISTRY

Date: 18-04-2016	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00		

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. What are the factors that favour the association of ions in an electrolytic solution?
- 2. Calculate the mean activity coefficient of 0.01 M aqueous solution of KCl at 25 °C (value of constant, A=0.51).
- 3. How many grams of silver would be deposited by passing 0.2 F of electricity through an electrolyte containing Ag^+ ions? (Equivalent weight of Ag = 108)
- 4. What is an inner Helmholtz plane in the electrical double layer model?
- 5. Mention the role of a supporting electrolyte used in polarography technique.
- 6. Calculate the applied potential for the reduction of aqueous 1.0 M Na $^+$. Given: $E_{eq} = -2.71$ V.
- 7. How are transfer coefficients related to symmetry factor in a complex multistep reaction?
- 8. What is phase over potential?
- 9. Why is it that Hg electrode does not allow charge to flow through itself?
- 10. Mention the significance of stoichiometric number.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Explain how electrophoretic and relaxation effects affect the mobility of an ion in solution.
- 12. Show that the conductance of electrolytic solutions at high potential gradient is an evidence for the existence of ionic atmosphere.
- 13. Calculate ΔG^{o} and equilibrium constant for the reaction in cell, $Cr_{(s)}/Cr^{3+}_{(aq)}//Cd^{2+}_{(aq)}/Cd_{(s)}$ ($E^{o}_{cell} = 0.34 \text{ V}$).
- 14. Derive Lippmann equation and explain the significance of electrocapillary curves.
- 15a. Calculate Debye-Huckel reciprocal length for 0.001 M CaCl₂ in ethanol at 300 K. (Dielectric constant of ethanol is 24.3)
 - b. The molar conductances at infinite dilution for Al^{3+} and SO_4^{2-} ions are 189 and 160 Ω^{-1} cm² mol⁻¹ respectively. Calculate the molar conductance at infinite dilution for $Al_2(SO_4)_3$. (3+2)
- 16. Distinguish between streaming and sedimentation potentials.
- 17. Calculate the effective resistance across 1 cm² of the electrode Pt, H_2 , H^+ when $\eta < 0.01V$. Given $i_0 = 0.79$ mA/ cm² and $\beta = 0.5$.
- 18. How will you obtain the slope and intercept when anodic current density dominates?
- 19. How is the electro catalytic activity of metals determined for hydrogen evolution reaction?
- 20. How does symmetry factor influence the efficiency of the rectification of an electrode?
- 21. The exchange current density and the anodic symmetry factor of an electrode are 1.75x10⁻⁴ Acm⁻² and 0.45 respectively. Determine the net current density of the electrode at 298 K under the over potentials a) 0.05 V b) -0.25 V.
- 22. Predict the conditions for an electrode to show i) no anodic tendency ii) no cathodic tendency.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Derive Debye-Huckel limiting law. How is it verified?
 - b. The solubility product of silver chloride is 1.77 ×10⁻¹⁰ mol²dm⁻⁶ at 25 °C. What is the solubility of salt in water at the same temperature in the presence of 10⁻⁴ M potassium chloride solution assuming Debye- Huckel limiting law to apply? (6+4)
- 24a. Derive linearized Poisson-Boltzmann equation for interionic interactions.
 - b. Calculate the weight of sodium chloride needed to decrease the freezing point of 500 ml of water to -8 °C. (K_f of water = 1.86 °C/molal; Molecular weight of NaCl = 58.5 g/mol) (6+4)
- 25a. Discuss the salient features of Gouy-Chapman model of electrical double layer.
 - b. With a neat sketch explain the important features of a polarogram. (6+4)
- 26. Derive the Butler-Volmer equation for a one electron electrode reaction and explain the low and high field approximations.
- 27a. How will you determine the anodic and cathodic orders for the mechanism of reduction of I₃?
 - b. The Tafel slope of the plot of $\ln i \text{ vs } \eta$ for positive over potential was found to be 48.53. Calculate the corresponding transfer coefficient. (6+4)
- 28a. How will you modify the Butler-Volmer equation into an equation for potential as a function of concentrations?
 - b. Compare the kinetics of the reduction of H⁺ over the surfaces of Hg and Pt. (6+4)
