LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2016

CH 4956 - ADVANCED COORDINATION CHEMISTRY

Date: 21-04-2016 Dept. No. Max.: 100 Marks
Time: 09:00-12:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Why does the g-value of most of the compound remain a constant and almost same as that for a free electron?
- 2. What are the factors causing tetragonal distortion in transition metal complexes?
- 3. Which of the following radicals are NMR active? Cite reasons: ¹²C, ¹³C, ¹⁴C, ¹⁴N, ¹⁶O, ¹⁹F, ²⁷Al.
- 4. What are optically transparent electrodes? Mention their applications.
- 5. What is the use of metal complexes in solar cell? Cite an example.
- 6. What is a molecular device? Cite an example.
- 7. Mention the role of bridging ligand in an electron transfer reaction with an example.
- 8. What is the structure of ferredoxin? Mention any two important functions.
- 9. Give the structure of porphyrin and its importance in photosynthesis.
- 10. What are pendant arm macrocyclic ligands? Give an example.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Draw and explain the esr spectrum of $[Cu(NH_3)_4]^{2+}$, $I_{Cu}=3/2$ $I_N=1$. Assume that the spin of hydrogen atoms do not couple with spin of electron.
- 12. Account for the shoulder observed in the electronic spectrum of $[Ti(H_2O)_6]^{3+}$.
- 13. Write a brief note on scalar and psuedocontact effect in the NMR spectrum of transition metal complexes.
- 14. ¹⁹F-NMR spectrum of a compound with formula [MF₆] showed only one singlet. Comment on its structure and spin of the central metal atom/ion.
- 15. How does polarographic analysis help in understanding the chemistry of complexes?
- 16. What are dendrimers? Explain the types of metallodendrimers.
- 17. What is template synthesis? Mention its role on the synthesis of Schiff base macrocyclic ligands.
- 18. How is ^{99m}Tc generated? Mention any four applications of metal complexes in radiotherapy.

- 19. Discuss the host-guest chemical relationship in forming supramolecular assemblies.
- 20. Describe the antenna effect and tunneling of electronic energy in supramolecular assemblies.
- 21. Write a note on non-linear optical materials.
- 22. What are photosensitizers? Discuss the role of metal complexes as photosensitizers.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23. Discuss the principles involved in differentiating the following compounds by Massbauer spectroscopy: i) FeSO₄.7H₂O ii) FeCl₃ iii) K₄[Fe(CN)₆] iv) K₃[Fe(CN)₆].
- 24. Compute the ground state term symbol for a d⁷ metal ion and draw qualitative Orgel diagram. Predict its electronic spectrum and also explain the changes expected in the spectrum due to tetragonal distortion.
- 25. Explain the divergent and convergent methods in the synthesis of dendrimers with an example.
- 26. Discuss the role of Ru(II) and Os(II) polypyridyl complexes employed in light harvesting devices and photosplitting of water molecule.
- 27. Describe the principles involved in using metal complexes as contrast enhancing agents in MRI.
- 28 a. Discuss anyone method of appending pendant arm functionalities onto macrocyclic framework.
 - b. Write a brief note on the different kind of supramolecular assemblies constructed by coordinate and hydrogen bonding. (5+5)
