LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

FIFTH SEMESTER - APRIL 2016

CH 5513/CH 5508 - FUNDAMENTALS OF SPECTROSCOPY

Date: 06-05-2016	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		

PART-A

Answer ALL questions

(10x2=20marks)

- 1. Define rigid rotor.
- 2. Which of the following molecules are micro wave active?

 Br_2 , H_2O , HBr , CO_2

- 3. State Beer-Lambert's law.
- 4. What are chromophores? Give an example.
- 5. What are fundamental and overtone vibrations?
- 6. State mutual exclusion principle.
- 7. Define chemical shift.
- 8. Which of the following are NMR active? Give reason.

- 9. Differentiate between Stokes lines and Antistokes lines.
- 10. State Nitrogen rule.

PART-B

Answer any **EIGHT** questions

(8x5=40 marks)

- 11. Explain the various regions of electromagnetic spectrum.
- 12. Give the factors influencing the intensity of spectral lines.
- 13. Explain in detail the types of electronic transitions possible in a molecule.
- 14. (a) The UV absorption peaks are usually broader than the IR absorption peaks. Explain.
 - (b) Give the difference between singlet and triplet excited states.

(3+2)

- 15. Give the block diagram for IR spectroscopy.
- 16. Discuss the classical theory of Raman spectroscopy.
- 17. Bring out the differences between IR and Raman spectroscopy.
- 18. The following compounds show only one NMR peak. Write suitable structural formula for the same.

(a)
$$C_3H_6$$
 (b) $C_2H_4Br_2$. (2.5 + 2.5)

1

19. Name the standard used in NMR and give reasons for using it as the standard.		
20. Explain NMR saturation and relaxation.		
21. What are the major components of a mass spectrometer?		
22. Explain isotope peaks and their applications.		
PART-C		
Answer any FOUR questions (4x10=40 n	narks)	
23. Explain the principle, instrumentation and applications of Flame Photometry.		
24. (a) Explain the experimental factors affecting λ max		
(b) Give the important parts of a UV-spectrophotometer.	(5)	
25. Draw the fundamental vibrational modes of CO ₂ and H ₂ O molecule,		
Which among them are IR and Raman active?		
26. (a) How will you distinguish between salicylic acid and p-hydroxy benzoic acid by IR spectro	scopy?	
	(6)	
(b) Give the vibrational frequencies for the following functional groups.		
(i) C=O (carboxylic acid) (ii) -OH (iii) -NH ₂ (iv) C=O (aldehyde).	(4)	
27. (a) Give an account of shielding and deshielding of protons in NMR spectroscopy.	(7)	
(b) A compound gives a proton NMR peak at 250 Hz downfield from the TMS peak in a		
Spectrophotometer operating at 50 MHz. Calculate the value of chemical shift.	(3)	
28. (a) How will you distinguish the three isomeric butanols on the basis of mass Spectrometry.		
(i) 1-Butanol (ii) 2-Butanol.	(6)	
(b) A compound with molar mass 16 shows its M and M+1 peaks with an intensity ratio	(-)	
100: 1.1. Find the molecular formula of the compound.	(4)	
	(-)	