LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

SIXTH SEMESTER - APRIL 2016

CH 6612 – MOLECULAR DYNAMICS (12th BATCH ONWARDS)

Date: 15-04-2016 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

PART - A

Answer ALL questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Define the term orbit and orbitals.
- 2. Calculate the energy of the photon associated with light of wavelength 3000 A°.
- 3. Define the term degeneracy of an energy level.
- 4. What are operators? Give an example.
- 5. Find the value of ln100!.
- 6. Define thermodynamic probability.
- 7. State Beer-Lamberts law.
- 8. The optical density of 0.001 M solution in a cell of 0.1 cm path length is 0.162. Calculate the extinction coefficient.
- 9. Define quantum yield.
- 10. Explain radiation less transition.

PART - B

Answer any EIGHT questions:

 $(8 \times 5 = 40 \text{ marks})$

- 11. Explain the difference between classical mechanics and quantum mechanics.
- 12. Explain the energy distribution in Black Body radiation.
- 13. State the postulates of quantum mechanics.
- 14. Write the Schrodinger equation. Explain the terms.
- 15. Derive the energy equation for butadiene.
- 16. Calculate the translational partition function of NO molecule at 300 K in a volume 1000 m³. Assuming the gas to behave ideally.
- 17. Derive Sackur-Tetrode equation and explain the terms involved.
- 18. Explain the mechanism of photosynthesis.
- 19. Explain the primary and secondary processes in a photochemical reaction.
- 20. Explain the spin-orbit coupling.
- 21. In the photochemical combination of hydrogen and chlorine a quantum efficiency of 1 x 10⁶ is obtained with a wavelength of 480 nm. How many moles of hydrogen chloride would be produced under these conditions per joule of radiation energy absorbed?
- 22. Explain the principle and applications of Flash photolysis.

PART – C	
Answer ANY FOUR questions:	$(4 \times 10 = 40 \text{ marks})$
23. a) What are quantum numbers? Give its significance.	(5)
b) Explain Bohr's theory of atom.	(5)
24. a) Calculate the de Broglie wave length of a body of mass 1 kg moving	
with a velocity of 2100 ms ⁻¹ .	(5)
b) Derive the expressions for eigenvalue and eigenfunction for a particle	
in one dimensional box.	(5)
25. Derive Maxwell-Boltzmann statistics. Give its application.	(10)
26. a) Derive an expression for translation partition function.	(5)
b) Discuss the kinetics of photochemical reaction of H ₂ and Br ₂ .	(5)
27. Explain any two of the following:	(10)
(i) Chemical Actinometers (ii) Phosphorescence	
(iii) Chemiluminescence (iv) Relaxation Technique.	
28. Derive Stern-Volmer equation. Give its applications.	(10)

\$\$\$\$\$\$\$