LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTHSEMESTER - APRIL 2017

CH 4809- APPLICATIONS OF SPECTROSCOPY

Date: 18-04-2017 Max.: 100 Marks Dept. No.

Time: 09:00-12:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

Why is the base peak formed at m/e 31 for methyl formate?

- 2. 3. How will you distinguish among three isomeric butanols on the basis of mass spectrometry?
- Why are the electronic absorption bands generally broad when compared to infra-red?
- 4. What is transannular conjugation? Give an example.
- 5. Why does 2,4,6-cycloheptatrienone show exceptionally low carbonyl stretching frequency?
- 6. Calculate the NMR frequency of proton in the field strength of 1.2 T. Given: $g_n = 5.5$.
- Sketch the ³¹P-NMR of H₃PO₂. 7.
- Predict the number of ESR lines for tertiary butyl radical. 8.
- 9. What is isomer shift?
- Mention the significance of quadrupole coupling constant. 10.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- Explain the mass spectral pattern of cyclohexanone. 11.
- What are charge transfer complexes? Explain their characteristics with an example. 12.
- Discuss the fragmentation pattern of benzamide using mass spectrometry. 13.
- Calculate λ_{max} of the following: 14.

- Explain the structural determination of the molecule of the type XY₄ using IR and Raman 15. spectroscopy.
- An organic compound with the molecular formula C₈H₆ decolorizes bromine in carbon tetrachloride 16. and gives a white precipitate with ammonical silver nitrate solution. There is a sharp intense band at 3300, 760 and 690 cm⁻¹ and weak absorptions at 3085 and 2110 cm⁻¹. Also it shows broad and weak absorptions at 650 and 610 cm⁻¹. Identify the structure of the compound and explain.
- 17. Explain the proton NMR spectra of HF and HCl molecules.
- Distinguish between homotopic and enantiotopic protons with examples. 18.
- Discuss the isotropic and anisotropic nature of g values in molecules. 19.
- Explain hyperfine coupling with an example. 20.
- What are prolate and oblate nuclei? Give an example. 21.
- 22. While Fe(CO)₅ shows quadrupole splitting, K₄[Fe(CN)₆] does not. Explain.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

23. An organic compound A (MF C₉H₁₀O₂) exhibits the following spectral data.

IR: 1745 cm⁻¹ (s), 1225 cm⁻¹ (broad, s), 749 cm⁻¹ (s) and 697 cm⁻¹ (s)

UV: \(\lambda \text{max} \) at 268, 264, 262 and 257 nm

¹HNMR: δ 1.96 (3Hs), 5.00 (2Hs), 7.22 (5Hs)

Mass: m/e 91 (base peak)

Deduce the structure of the compound.

24. Draw and explain the Orgel energy level diagram of tetrahedral and octahedral complexes of Co²⁺.

25a. Explain the mass spectral pattern of hexanoic acid.

b. Distinguish between i) Maleic and fumaric acid and ii) propanaldehyde and acetone using IR spectroscopy. (5+5)

26a. Discuss the COSY of isopentyl methyl ketone.

b. Why is 'g' used as an index to interpret EPR spectra?

(6+4)

27a. Predict the ¹⁹F- NMR of BrF₅ molecule and arrive at its structure.

b. Explain electric field gradient and quadrupole moment.

(5+5)

- 28a. Discuss the Mossbauer spectrum of a nucleus with ground state spin $\frac{1}{2}$ and excited state spin $\frac{3}{2}$ when $e^2Qq \neq 0$; B=0.
 - b. What are Kramer's doublets? Give an example.

(6+4)
