LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRDSEMESTER - APRIL 2018

6PCH3MC02/CH3814 - THERMODYNAMICS AND CHEMICAL KINETICS

Date: 26-04-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Define Chemical potential.
- 2. Show that $\left(\frac{\partial \ln a}{\partial T}\right)_{P, n_1, n_2, = -\overline{H}_j/T^2}$
- 3. What are coupled and uncoupled reactions?
- 4. State Prigogine's principle of minimum entropy production.
- 5. Obtain the relationship between internal energy and partition function.
- 6. The entropy of activated complex increases for the reaction between two oppositely charged ions in solution Justify.
- 7. What is the effect of temperature on the rate of enzymatic reactions?
- 8. Draw the potential energy diagram of a catalysed reaction forming van't Hoff intermediate.
- 9. The rate constant for the reaction, $H^+ + OH^- \rightarrow H_2O$ is 1.3×10^{11} dm³ mol⁻¹ s⁻¹. Calculate the half-life for the neutralisation process if $[H^+] = [OH^-] = 0.1$ M.
- 10. How are chain reactions classified based on the number of radicals produced in propagation step?

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Explain the three important uses of Ellingham diagram with suitable examples.
- 12. Obtain the phenomenological equations and their cross coefficients for streaming potential and electro-osmosis.
- 13. Calculate the vibrational partition function for nitrogen gas at 300 K, if the vibration frequency is $2360 \times 10^2 \text{ m}^{-1}$.
- 14. How does a concept of irreversible thermodynamics apply to biological process?
- 15. Discuss the Einstein theory for specific heat capacity of solids.
- 16. Derive the Sackur–Tetrode equation for a monoatomic gas.
- 17a. Calculate the number of collisions per second in one cubic centimetre of iodinecontaining $1.04 \times ^{19}$ molecules at 300 K. (Given: Collision diameter, $\sigma = 4.6$ Å and $M_{Iodine} = 254$ g mol⁻¹).
 - b. Differentiate time and true order of a reaction with the relevant graphs. (2+3)

- 18. Explain the effect of added salt on the rates of ionic reactions in solution.
- 19. Discuss the kinetics of free radical polymerization reactions.
- 20. Describe any one mechanism for a bimolecular surface reaction with an example.
- 21. Explain the kinetics of hydrogen-bromine reaction.
- 22. Compare the rate constant expressions obtained by TST and collision theory for the reaction between two atoms

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

(5+5)

- 23a. Sketch the phase diagram and arrive at the degrees of freedom for all the regions of a system leading to the formation of double salts.
 - b. Discuss any two methods of determining the fugacity of a real gas. (5+5)
- 24a. State Peltier effect and obtain their phenomenological equations and coefficient.
 - b. Explain Onsager theory in the light of phenomenological reciprocal relationship. (5+5)
- 25a. What are Bosons? Obtain the most probable distribution of indistinguishable particles using Bose-Einstein statistics.
 - b. Calculate the translational partition function of NO molecule at 500 K in a volume of 100 m³ assuming the gas to behave ideally. (5+5)
- 26a. Explain the kinetics of atom and radical combination reactions.
 - b. Find the value of Δ^{\neq} H° for a bimolecular reaction having 115 kJ mol⁻¹ of activation energy.

(7+3)

- 27a. Explain the principle of flash photolysis to study the kinetics of fast reactions.
 - b. Explain the kinetics of consecutive reactions with a relevant graph.

28a. Discuss the effect of substrate concentration on enzymatic reaction.

b. The rate of an enzymatic reaction is 2.48×10^{-4} mol L⁻¹ min⁻¹ and is decreased by a factor of 2.4 if a competitive inhibitor is present. Calculate the degree of inhibition. (7+3)
