LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - CHEMISTRY

FOURTHSEMESTER – APRIL 2018

16PCH4MC02/CH4814/CH4808- ELECTROCHEMISTRY

Date: 20-04-2018	Dept. No.	Max.: 100 Marks
Time: 01:00-04:00		

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. How does the added inert electrolyte affect the solubility of a sparingly soluble salt?
- 2. Write the effect of ion-pair and triple ion formation on molar conductivity of LiBF₄ in dimethoxy ethane solution at 25 °C.
- 3. How is zeta potential determined from the streaming potential?
- 4. Calculate Helmholtz capacitance per unit area in μ F/cm² when a double layer is separated by a distance of 4Å in aqueous electrolyte solution. The permittivity of vacuum is 8.854 x 10⁻¹² F/m and the permittivity of water is 78.
- 5. How are the symmetric factor and transfer coefficient related in a multistep reduction reaction?
- 6. Obtain the number of electrons that participate in the rate determining step of a reaction with the parameters: $\vec{\alpha} = 1$: $\vec{\gamma} = 1$ and $\gamma = 2$.
- 7. Mention the significance of polarization curve.
- 8. Define the term concentration over potential.
- 9. Write the equation which relates the diffusion current with the analyte concentration.
- 10. Distinguish between primary and secondary batteries.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Determine the relationship between the mean ionic concentration C_{\pm} and the ordinary molar concentration, C for binary electrolytes of the type 1:3 and 2:3.
- 12. Derive the Bronsted-Bjerrum equation for the effect of added salt on rate constants in ionic reactions.
- 13. Calculate the energy per unit area of an electric double layer for a surface potential of 40 mV in an aqueous solution containing 0.01 monovalent ions (Debye length is 30.4 nm).
- 14. Discuss the sedimentation potential of the moving particle in a medium.
- 15. Obtain the Tafel equation for the cathodic process of a multi step reaction.
- 16. Modify Butler-Volmer equation into an equation for potential as a function of concentration.
- 17. How are symmetric factor and equilibrium potential determined experimentally?

18. The exchange current density of Pt/Cu²⁺, Cu⁺ is 4.8 mAcm⁻². Calculate the net current density across

the electrode at 25 °C with a applied voltage of 2 V when $[Cu^+] = 0.1$ M and $[Cu^+] = 0.2$ M. (SRP = 0.15 V and $\beta = 0.54$)

- 19. Predict the conditions for i) an electrode to act as an anodic rectifier ii) the net current density to be independent of symmetric factor.
- 20. Discuss the influence of pH and polarization of the electrode surface on the rate of corrosion.
- 21. Explain with examples any two types of titration curves obtained in amperometry.
- 22. How will you compare the kinetics of the reaction $M \rightarrow M^{n+}$ + ne carried out at two over potentials + 0.3 V and 0.3 V?

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23. Derive an expression for Debye-Huckel length and electrostatic potential, $\varphi_i(r)$.
- 24 a. Derive the Debye-Huckel-Onsager equation for strong electrolytes. (8+2)
 - b. At 25°C the molar ionic conductivity of Na⁺ is 5.01 mSm²mol⁻¹. Calculate its mobility.
- 25a. How is the differential capacitance of the electric double layer determined using the Gouy-Chapman diffuse-charge model? (6+4)
 - b. Calculate Stokes frictional force of the spherical object with 1 m radius, moving in a 1 Pa.s viscous fluid. The flow velocity relative to the object is 1 m/s.
- 26. The reduction of Fe²⁺to Fe follows mechanism given below.

$$Fe^{2+} + H_2O \rightleftharpoons FeOH^+ + H^+$$

(1) K_1

$$FeOH^+ + e \rightleftharpoons FeOH(2) K_2$$

$$FeOH + H^+ + e \rightleftharpoons Fe + H_2O$$
 (3) K_3

How will you prove that the second step is the rate determining step?

- 27. a. Describe the construction and working of a solid oxide fuel cell. (6)
 - b. How will you express Nernst equation as a pH dependent equation for the redox system MnO_4^-/Mn^{2+} ? (4)
- 28a. Discuss the steps involved in an anodic stripping voltammetry technique.
 - b. Predict the cathodic orders involved in the reduction process of I₃⁻.

\$\$\$\$\$\$\$\$