LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRSTSEMESTER - APRIL 2018

7/16PCH1MC03/CH1814/CH 1808 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 28-04-2018	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00		

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Show that for a particle in a one dimensional box, the wave functions Ψ_1 and Ψ_2 are orthogonal.
- 2. The fireball in a thermonuclear explosion can reach temperature of 10^7 K. What value of λ_{max} does it correspond to? In what region of the electromagnetic spectrum is this wavelength found?
- 3. Calculate zero point energy for a particle of mass 1.68×10^{-27} kg executing simple harmonic oscillation. (Force constant = 10 Nm^{-1})
- 4. State Bohr's correspondence principle.
- 5. Draw the radial distribution plot for 2s and 3p orbitals and indicate the nodes.
- 6. State Pauli's exclusion principle as applied to fermions.
- 7. Write the Hamiltonian for an atom containing two electrons and mention the terms.
- 8. Mention the significance of the commutation relationship that exists between operators.
- 9. Predict the symmetry elements present in chloroform molecule.
- 10. Give any two examples of point groups for which the mutual exclusion principle is applicable.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Derive the time-independent Schrodinger wave equation.
- 12a Show that Balmer series occurs between 3646 Å and 6563 Å.
- b. Find the value of z in Cartesian coordinate using the elliptical coordinate (6, 1/3, 180°) having major axis (R) 12 units. (3+2)
- 13. Obtain an expression for the ground state energy of a rigid rotor.
- 14. Explain quantum mechanical tunneling with suitable evidences.
- 15. Apply variation theorem to the probability of finding the particle in one dimensional box of length 'a' using the trial wave function, $\psi = x (a x)$.
- 16. Show that $[L_x, L_y] = i\hbar L_z$
- 17. Write down the Slater determinants for the excited state of He atom.
- 18. How are the energy integrals evaluated for hydrogen molecular ion?
- 19. Apply Huckel approximation method to calculate the total energy in ethylene molecule.
- 20. Bring out the differences between vertical and dihedral planes with examples.

- 21. Obtain the matrix representation for the reflection operation performed in XY-plane.
- 22. List out the symmetry elements and operation of D_{2d} point group.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Outline the postulates of quantum mechanics.
- b. The threshold wavelength for a metal is 3800 Å. Calculate the maximum kinetic energy of photo electrons ejected when the light of wavelength 2500 Å strikes. (6+4)
- 24a. Calculate the wavelength of the photon emitted when a particle of mass 2.1×10^{-29} kg in one dimensional box of length 3.98 nm goes from n = 2 to n = 3 level.
 - b. Derive the wave function and energy for a particle in a rectangular three dimensional box.

(4+6)

- 25a. Write the Schrodinger equation to be solved for hydrogen atom and solve it for its energy using a simple solution, which assumes the wave function to depend only on the distance r and not on the angles θ and φ .
 - b. Prove that $3e^{-8x}$ is an eigen function of second order differentiation. Find its eigen value.

(7+3)

- Derive expressions for the bonding and anti-bonding molecular orbitals of H_2^+ using variation method.
- 27a. Obtain the possible roots of secular determinant for 1,3-butadiene molecule. (5)
 - b. Arrive at the possible electronic configuration for the ground state term symbol ${}^{3}P_{2}$ (5)
- 28a. Construct C_{3v} character table using Great orthogonality theorem. (5)
 - b. Prove that $\pi \to \pi^*$ transition in formaldehyde is electronically allowed. C_{2v} character table is provided for your reference.(5)

C ₂ v	Е	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$
A_1	+1	+1	+1	+1
A_2	+1	+1	-1	-1
B_1	+1	-1	+1	-1
B_2	+1	-1	-1	+1

\$\$\$\$\$\$\$\$\$