LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECONDSEMESTER – APRIL 2018

17/16PCH2MC03/CH2821- MOLECULAR SPECTROSCOPY

Date: 21-04-2018	Dept. No.	Max.: 100 Marks
Time: 01:00-04:00	l	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Find the vibrational wave number of HCl having a rotational constant of $10.593~\text{cm}^{-1}$ and centrifugal distortion constant of $5.3 \times 10^{-4}~\text{cm}^{-1}$.
- 2. How will you distinguish CH₃CH₂NH₂ and CH₃CH₂CONH₂ using IR spectroscopy?
- 3. State Franck-Condon principle.
- 4. Why is the $\sigma \rightarrow \sigma^*$ transition observed only in vacuum UV region?
- 5. Predict the base peak in the mass spectrum of toluene.
- 6. Calculate the Larmor frequency of a 13 C nucleus in a magnetic field of 24.3 T, given that the gyromagnetic ratio is $6.73 \times 10^7 \, \text{T}^{-1} \, \text{s}^{-1}$.
- 7. Vicinal coupling constants in olefins is larger for *trans*coupling than for *cis* coupling Why?
- 8. Write the McConnel equation and mention its application.
- 9. Determine the Doppler velocity of gamma ray emission whose line width is found to be 1.45×10^{-12} .
- 10. Justify how temperature dependence of NQR frequencies determines the hydrogen bonding strength of a compound.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Discuss the factors influencing the intensity of spectral lines.
- 12. The vibrational Raman spectrum of ³⁵Cl₂ shows a series of Stokes' lines separated by 0.9752 cm⁻¹

¹. Find the bond length of Cl₂·

- 13. Explain P and R branches in the spectra of a diatomic vibrating rotor.
- 14. Discuss the different types of absorption bands seen in electronic spectrum of organic compounds.
- 15. Discuss MLCT and LMCT bands of transition metal complexes with suitable examples.
- 16a. Explain how linkage isomers can be studied with the help of IR spectroscopy?
 - b. What is a metastable ion peak?

(3+2)

- 17. Explain the two kinds of relaxation process in ¹H NMR spectroscopy.
- 18. An acetylene proton signal is observed at downfield compared to an alkene proton. Why?

- 19. Arrive at the hyperfine splitting pattern of the following complexes:
 - (a) bis (salicyaldoxime) copper (II) ion
- (b) $[Ti(H_2O)_6]^{2+}$
- 20. An organic compound with the molecular weight 108 shows the following spectral data:

UV: λ_{max} 255 nm ϵ_{max} 202

IR: 3402 (s,b), 3065 (w), 2288 (m), 1499 (w,sh) and 1455 cm⁻¹(m)

NMR: 7.26 δ (singlet, 24.5 squares), 4.6 δ (singlet, 9.5 squares), 3.9 δ (singlet, 4.8

squares).

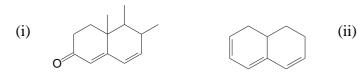
top

Arrive at the correct structure of the molecule.

- 21. Describe the importance of asymmetry parameter and quadrupole coupling constant in NQR spectroscopy.
- 22. Mössbauer spectra are recorded by mounting the sample nucleus in solid matrices-Justify.

Part-C

Answer any FOUR questions.


 $(4 \times 10 = 40)$

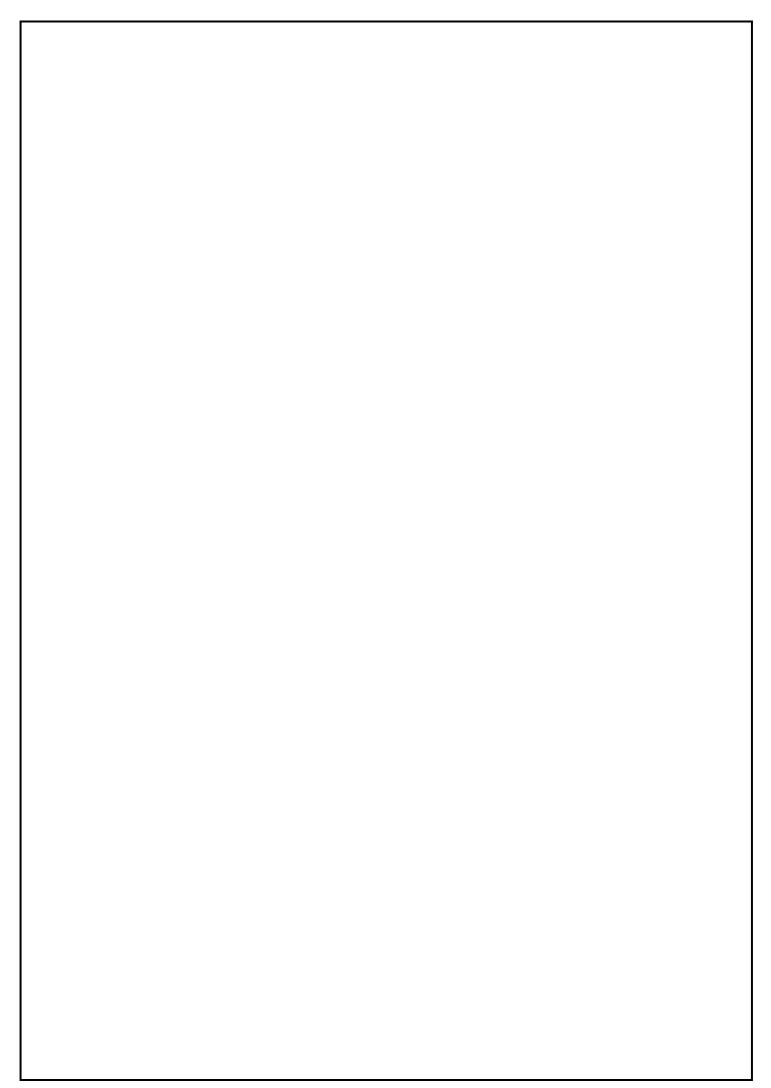
23a. Explain the influence of rotation on parallel and perpendicular vibrations of symmetric molecules.

b. State and explain the rule of mutual exclusion principle.

(6+4)

24a. Predict λ_{max} for the following compounds using Woodward-Fieser rule.

b. Distinguish between hypsochromic and bathochromic shifts with relevant examples.


(6+4)

- 25a. The mass spectrum of an organic compound having molecular formula, C₅H₁₀O shows peaks at m/z values 86, 85, 44 (base peak), 57,42 and 29. Predict the structure and confirm it by showing the various fragmentation patterns.
- b. State the even electron rule followed in mass spectrometry.

(7+3)

- 26a. ¹H NMR spectrum of an organic compound recorded on 400 MHz spectrometer shows a quartet with line position at 1859, 1853, 1847 and 1841 Hz. Calculate the chemical shift (δ,ppm) and coupling constant (J, Hz) of quartet peak.
 - b. Explain the significance of diagonal and off diagonal spots in 2D NMR spectrum of 3-bromobutane.
- 27a. Account for the importance of zero-field splitting in the EPR spectra of triplet naphthalene and V^{3+} ion.
 - b. What are lanthanide shift reagents? Mention their uses in NMR spectroscopy.
- 28a. Calculate the nuclear quadrupole energy levels and their corresponding NQR frequencies for a nucleus with I=3 as a function of e^2Qq . How many transitions are possible?
 - b. Discuss the Mössbauer spectral features of $K_4[Fe(CN)_6]$ and $K_3[Fe(CN)_5(NO)]$ complexes.
