# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034



### M.Sc.DEGREE EXAMINATION - CHEMISTRY

THIRDSEMESTER - APRIL 2018

### CH3813/CH 3809- COORDINATION CHEMISTRY

| Date: 19-04-2018  | Dept. No. | Max.: 100 Marks |
|-------------------|-----------|-----------------|
| Time: 01:00-04:00 |           |                 |

#### Part-A

## Answer ALL questions.

 $(10 \times 2 = 20)$ 

- 1. Differentiate tetragonal distortion and Jahn-Teller distortion.
- 2. What is spectrochemical series?
- 3. Predict whether the metal ion with d<sup>4</sup>, high spin octahedral complex possesses, spin only magnetic moment or both spin and orbital magnetic moment.
- 4. How are nitro and nitrito ligands differentiated by IR spectroscopy?
- 5. What is anation reaction? Give an example.
- 6. What is meant by fluxional isomerism? Explain with an example.
- 7. What is Fischer-Tropsch synthesis?
- 8. Why is KMnO<sub>4</sub> dark pink in colour?
- 9. Mention the specific functions of the enzyme, superoxide dismutase.
- 10. Highlight the significance of the structure of chlorophyll in photosynthesis.

#### Part-B

## Answer any EIGHT questions.

 $(8 \times 5 = 40)$ 

- 11. State Jahn-Teller theorem and explain the types of Jahn-Teller distortion in octahedral, high spin, d<sup>1-10</sup> metal complexes.
- 12. Compute OSSE to predict whether the following oxides are spinel or inverse spinel.
  - a) Mn<sub>3</sub>O<sub>4</sub>
- b) ZnFe<sub>2</sub>O<sub>4</sub>
- 13. Explain the variations in the stretching frequency of the isoelectronic species,  $[Cr(CO)_6]$ ,  $[V(CO)_6]^-$  and  $[Mn(CO)_6]^+$ .
- 14. Derive the ground term of  $d^4$  and  $d^7$  configuration of metal ion.
- 15. Explain the mechanistic pathway of coordination compounds as industrial catalysts in a) hydroformylation reaction b) alkene hydrogenation reactions.
- 16. How is absolute configuration of chiral complexes determined by ORD method?
- 17. Explain 'trans effect' in explaining the substitution reactions of square planar complexes.
- 18. Discuss the types of photosubstitution reaction with suitable example.

- 19. Discuss the 18-electron rule. Apply this rule to calculate effective atomic number of the metal in each of the following complexes.
  - (i)  $[(C_2H_4) \text{ Fe } (CO)_3]$
- (ii)  $(\eta^5 C_5 H_5)_2$  Fe
- 20. Describe the associative mechanism of substitution reaction.
- 21. How does Bohr effect explain the factors affecting the oxygen binding capacity of haemoglobin?
- 22. Discuss the role of metal complexes in photo system I and II.

#### Part-C

### Answer any FOUR questions.

 $(4 \times 10 = 40)$ 

- 23. How does MOT explain the formation of low and high spin, octahedral metal complexes with  $\sigma$  and  $\pi$ -bond forming ligands?
- 24. Construct Orgel diagram for the electronic configuration of d<sup>1-10</sup> metal complexes and predict the number of expected peaks in the electronic spectrum.
- 25a Discuss in detail the mechanisms of inner and outer sphere electron transfer in metal complexes.
  - b. Why is the electron transfer in the system  $[Co(NH_3)_6]^{2+}$ - $[Co(NH_3)_6]^{3+}$  slower than that of  $[Fe(CN)_6]^{4-}$ - $[Fe(CN)_6]^{3-}$ ?
- 26a. Discuss in detail the properties of ferrocene.
  - b. Discuss the bonding in ferrocene on the basis of MO theory.
- (4+6)
- 27a Write a brief note on the types of charge transfer transition in metal complexes with suitable examples.
  - b. Explain photoaquation and photoisomerisation reactions with examples.
- 28. Write a brief note on the specific functions of the enzymes, carboxypeptidase and carbonic anhydrase.

\$\$\$\$\$\$\$\$