LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

SIXTH SEMESTER - APRIL 2018

CH 6609- SYNTHETICS ORGANIC CHEMISTRY AND SPECTROSCOPY

Date: 03-05-2018	Dept. No.	Max. : 100 Marks

Time: 01:00-04:00

PART-A

Answer all questions

Δ

Δ

 $(10 \times 2 = 20)$

- 1. Define the term regiospecificity.
- 2. What do you mean by a precursor?
- 3. What is Jones reagent? What is its usefulness?
- 4. Name the reagents used for the following conversions

- b) R-CO-R' \rightarrow RCOOR'
- 5. Predict the product in the following reactions:
- a) 1, 3-Butadiene+ Acrolein \rightarrow ?
- a) 1, 3-Butadiene+ Maleic anhydride \rightarrow ?
- 6. What is meant by an active methylene group? Give an example.
- 7. Which will absorb at shorter wavelength region? Why?

Cis – stilbene or Trans - stilbene

8. Calculate the λ max for the following compounds

- 9. What is coupling constant?
- 10. How will you distinguish between ortho and p hydroxybenzaldehyde from their IR spectra?

PART-B

Answer any EIGHT questions

 $(8 \times 5 = 40)$

- 11. Enumerate the advantages of retro synthetic approach.
- 12. Write a note on reversal of polarity.
- 13. What do you mean by functional group transposition? Explain it with an example.
- 14. What is DIBAL? Explain its usefulness in organic synthesis.
- 15. Outline the mechanism of Clemmenson's reduction with an example.
- 16. Write the mechanism of crossed –aldol condensation reaction with an example.
- 17. Write the mechanism of Keto-enoltautomerism taking ethyl acetoacetate as a reference compound.
- 18. How are the following compounds distinguished from their IR spectra.

 $C_6H_5COCH_2CH_3$ and $C_6H_5CH_2COCH_3$

19. An organic compound A with Molecular formula C₃H₉N shows the following peaks in the IR spectrum.

 3012 cm^{-1} (m), 3423cm^{-1} (s), 3236 cm^{-1} (m)and 1615cm^{-1} (m)

When the compound A is treated with HNO₂, we get a compound B which shows a strong peak at 3430 cm⁻¹.

What are A and B and explain the reactions involved?

- 20. What is spin-spin coupling? Explain it with an example.
- 21. Write the mechanism of McClafferty rearrangement.
- 22. State and explain nitrogen rule with an example.

PART-C

Answer any FOUR questions

 $(4 \times 10 = 40)$

- 23. Explain the usefulness of the following in modern organic synthesis.
- (5+5)

- a) Activating groups b) Bridging elements
- 24. Predict the products in the following reactions and suggest a suitable mechanism. (5+5)

Zn (Hg), HCl

a) Acetophenone -----?

	b) Cinnamaldehyde?			
25.	a) Write the mechanism of Baeyer – Villiger oxidation taking an appropriate example.	(5)		
	b) Predict the product in the following reaction and suggest a suitable mechanism.	(5)		
	Base			
	Cinnamaldehyde + Diethylmalonate?			
26.	a) A cyclic ketone A (C_5H_8O) on reaction with NaOCH $_3$ gives a product B which has the following	llowing		
	spectral properties.			
	IR: 1740cm ⁻¹ (s), 1160cm ⁻¹ (s)			
	UV: Transparent above 200nm			
	¹ H-NMR: δ3.6 (3H, S), δ1.2 (9H S)			
	Mass: m/z 116, 85, 59, 31.			
	Deduce the structure of A and B.			
	b) Why is TMS chosen as a reference compound in NMR spectroscopy? (6+4)			
27.	Discuss the use of IR spectroscopy in distinguishing between inter and intra molecular hydrobonding.	gen		
28.	a) How will you distinguish between 3-methyl and 4-methyl cyclohexene on the basis of mas	SS		
	spectroscopy?			
	b) Mass spectra of acetone, propionaldehyde and ethyl methylketone show strong peaks at m	/z values of		
	43, 57 and 57 respectively. Suggest a possible origin for each of these peaks.			
	c) Write a note on the concept of see back in organic synthesis. (3+3+4)	4)		

 $NaBH_4 / H^+, H_2O$