LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION - **CHEMISTRY**

SIXTH SEMESTER - APRIL 2019

CH 6612- MOLECULAR DYNAMICS

Date: 04-04-2019	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		

PART-A

Answer **ALL** Questions

(10x2=20 marks)

- 1. What is Zeeman effect?
- 2. Mention any two drawbacks of classical mechanics.
- 3. Consider a particle in a box with the lowest energy (n=1). What is the probability of the particles being between (L/2and0.01L) and (L/2-0.01L)?
- 4. Write the Schrodinger's wave equation for a particle in 1-D box and mention the various terms involved in it.
- 5. Give any two differences between macro and micro states.
- 6. What do you mean by thermodynamic probability?
- 7. Define the term quantum yield.
- 8. The molar extinction coefficient of a coordination complex of Fe (II) is 12,000dm³mol⁻¹cm⁻¹ and the minimum detectable absorbance is 0.01. Calculate the minimum molar concentration of the complex that can be detected in a Beer's law cell of path length 1.00cm.
- 9. What do you mean by quenching in photochemical process?
- 10. Why is the quantum yield of photochemical combination of H₂ and Cl₂ abnormally high?

PART-B

Answer any **EIGHT** Questions (8x5=40 marks)

- 11. Write a note on 'photoelectric effect'.
- 12. Determine the energy required for a transition from the $n_x=n_y=n_z=1$ to $n_x=n_y=n_z=2$ for an Argon atom (atomic mass = 39.95g) in a cubic container with a 1.0cm side.
- 13. Write the postulates of quantum mechanics.
- 14. What are the Eigen functions and Eigen values of the operator d/dx?
- 15. For a particle in a one dimensional box with its potential energy zero, deduce the de Broglie relation from its energy expression. (5)
- 16. Explain the following terms
 - a) Most probable distribution b) Partition function.

- 17. Calculate the molar residual entropy of a crystal in which the molecules can adopt 6 orientations of equal energy at 0K.
- 18. Distinguish between fluorescence and phosphorescence.
- 19. List out the differences between thermal and photochemical reactions.
- 20. What are chemical actinometers? How are they useful in the determination of quantum yield of a reaction?
- 21. Write short notes on bimolecular quenching.
- 22. Explain the kinetics of photochemical combination of H₂ and Br₂ reaction.

PART-C

Answer any **FOUR** Questions

(4x10=40 marks)

- 23.) Explain the following (5+5)
 - a) Bohr's theory of an atom
 - b) Emission spectrum of 'H'atom
- 24. a) What are quantum mechanical operators? Explain them briefly.
 - b) Derive the energy equation for ethylene molecule.
- 25. Derive Sackur-Tetrode equation. Give its applications
- 26. a) Calculate the translational partition function of a molecule of oxygen gas at 1 atm and 298K moving in a vessel of volume 24.4dm³.(5)
 - c) Write a note on flash photolysis.(5)
- 27. With a neat sketch of Jablonski diagram, explain the various photo physical and photochemical processes that occur during a photochemical reaction.
- 28. Derive Stern Volmer equation. Give its applications.
