LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **CHEMISTRY**

SIXTH SEMESTER - APRIL 2019

CH 6613- COORDINATION CHEMISTRY

Date: 05-04-2019 Dept. No Ma	ax.: 100 Marks
------------------------------	----------------

Time: 09:00-12:00

PART-A

Answer ALL the questions

 $(10 \times 2 = 20 \text{ marks})$

- 1. Write the IUPAC names of following compounds.
 - (i) $[CoBr(NH_3)_5]SO_4$, (ii) $[Fe(OH)(H_2O)_5]^{2+}$
- 2. Calculate CFSE for Mn²⁺, high spin complex.
- 3. Which amongst the following is paramagnetic?
 - i. $Ni(CO)_4$, ii. $[Ni(CN)_4]^{2-}$
- 4. Apply EAN rule to $[Cr(NH_3)_6]^{3+}$.
- 5. Give any two characteristics of nitrogenase enzymes.
- 6. Define outer sphere mechanism with an example.
- 7. Mention the applications of radiopharmaceuticals.
- 8. Give the biological role of haemoglobin.
- 9. What is chelate therapy?
- 10. Define metal template synthesis with a suitable example.

PART-B

Answer any EIGHT questions

 $(8 \times 5 = 40 \text{ marks})$

- 11. Account for the magnetic property of each of the given complex. Which one of the following has the highest paramagnetism?
 - (a) $\left[Cr(H_2O)_6\right]^{3+}$ (b) $\left[Fe(H_2O)_6\right]^{2+}$ (c) $\left[Cu(H_2O)_6\right]^{2+}$ (d) $\left[Zn(H_2O)_6\right]^{2+}$
- 12. Write a note on photoredox reactions.
- 13. Give the product formed when
 - i. Reaction of [PtCl₄]²⁻ with NH₃ followed by [NO₂]ii. [PtCl₄]²⁻ with [NO₂]⁻ followed by NH₃

- 14. Discuss the structure and function of cytochromes.
 - 15. How does Zeigler-Natta catalyst catalyze the polymerization of ethylene?
 - 16. Explain the Jahn-Teller distortion in [Cu(H₂O)₆]²⁺.
 - **17.** Give the increasing order of of of the following chromium complexes,

$$[CrCl_6]^{3-}$$
, $[Cr(NH_3)_6]^{3+}$, $[Cr(CN)_6]^{3-}$. Explain

- 18. Determine the configuration (in the form $t_{2g}^{m}e_{g}^{n}$), thenumber of unpaired electrons, and the ligand field stabilization energy for each of the following complexes using the spectrochemical series to decide, which are strong-field and weak-field.
 - (a) $[Co(NH_3)_6]^{3+}$; (b) $[Fe(OH_2)_6]^{2+}$
- 19. Explain metal template synthesis of Schiff bases with suitable examples.
- 20. Discuss the mechanism of outer sphere electron transfer reaction with suitable examples.
- 21. Describe the structure and bonding in i. Metal alkyls ii. Carbenes.
- 22. Explain the relative affinity of O₂ for haemoglobin.

PART-C

Answer any FOUR questions

(4 x 10=40 marks)

- 23. What are —acceptor ligands? Discuss in detail the nature of bonding involved in Fe(CO)₅ and Ni(CO)₄.
- 24. Discuss the and metal –ligand bonding in transition metal complexes with reference to octahedral geometry.
 - 25. a) Explain the biological role played by carboxypeptidase A.
 - b) Discuss invivo and in vitro nitrogen fixation

(5+5)

- 26. a) Apply 18 electron rule to Ni(CO)₄ and Cr(CO)₆.
 - b) Discuss the structure and bonding of ferrocene.

(5+5)

- 27. Discuss nucleophilic substitution mechanism reactions for octahedral complexes.
- 28. a) With a neat diagram explain crystal field splitting of d orbitals when d⁶(high spin) metal ion is placed in an octahedral field
- b) With a suitable example propose the mechanism of hydrogenation of olefins using Wilkinsons catalyst. (5+5)

