LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - APRIL 2022

18/17/16UCH3MC01 - THERMODYNAMICS

Date: 28-06-2022	Dept. No.	Max.: 100 Marks
Time: 09:00 AM - 12:0	OO NOON	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Differentiate intensive and extensive properties with examples.
- 2. State the principle of equipartition energy.
- 3. Mention the significances of Joule-Thomson coefficient.
- 4. What is meant by integral heat of dilution?
- 5. State Clausius statement of second law of thermodynamics.
- 6. Write the criteria for spontaneity of a reaction.
- 7. List any three characteristics of equilibrium constant.
- 8. What is the effect of temperature on the dissociation of N_2O_4 ?
- 9. Define thermodynamic probability.
- 10. What is meant by residual entropy?

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Write the postulates of kinetic theory of gases.
- 12. Derive van der Waals equation of state.
- 13. 2.0 moles of an ideal gas expand isothermally and reversibly from a volume of 2 dm³ to a volume of 10 dm³ at 25°C. What is the maximum work done? Express the result in joules.
- 14. Explain the variation of temperature with the heat of a reaction.
- 15. Prove that PV^{γ} is a constant for an ideal gas.
- 16. Obtain any two Maxwell relations.
- 17. Heat supplied to a Carnot engine is 453.6 Kcal. Calculate the work done by the engine in KJ between 0°C and 100°C.
- 18. Derive Gibbs-Helmholtz equation. What are its applications?
- 19. Show that Joule- Thomson expansion is isoenthalpic and adiabatic.
- 20. Derive the relationship between K_p and K_c.
- 21. State and explain Nernst heat theorem.
- 22. Explain how absolute entropy of a substance can be determined with the help of third law of thermodynamics.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23. Write the expression for Maxwell's distribution of molecular velocities and discuss its characteristics.
- 24. Define heat capacities at constant volume and at constant pressure and deduce the relationship between them.
- 25. Describe in detail the Carnot reversible cycle for stabilising the maximum convertibility of heat into work.
- 26a. State Hess's law of constant heat of summation. Discuss any one of its applications.
 - b. Discuss the effect of temperature, pressure and concentration on the dissociation of ammonia.

(5+5)

- 27. Derive the integrated form of van't Hoff equation.
- 28a. Write the assumptions of Maxwell–Boltzmann statistics.
 - b. What is meant by partition function? Obtain the relation between partition function and energy.

(5+5)