LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - APRIL 2022

PCH 3502 - THERMODYNAMICS AND CHEMICAL KINETICS

Date: 15-06-2022	Dept. No.	Max. : 100 Marks
Time: 00:00 AM 10:0	OO NOON	I

Part-A

Answer ALL Questions.

 $(10 \times 2 = 20)$

- 1. Define activity and activity coefficient.
- 2. Calculate the ionic strength of 0.05m K₂SO₄.
- 3. What is Peltier effect? Mention its importance.
- 4. Define the term flux. Mention the cause for the flux.
- 5. Calculate the electronic partition function for an atom at its ground electronic state ${}^{2}P_{3/2}$.
- 6. Define impact parameter. Mention its significance.
- 7. The experimentally determined energy of activation for the decomposition of a diatomic molecule is 220.0 kJ mol⁻¹. Calculate the energy of activation at 400°C according to collision theory.
- 8. For the reaction between unlike charges in aqueous solution, the pre-exponential factor is found to be high. Justify.
- 9. Sketch the block diagram of flash photolysis for studying the kinetics of fast reactions.
- 10. Mention the factors that affect the first explosion limit of branched chain reactions.

Part-B

Answer any EIGHT Questions.

 $(8 \times 5 = 40)$

- What is Ellingham's plot? How does it prove that carbon is a good reducing agent for the oxides of several metals?
- 12. Draw and explain the phase diagram of a ternary system consisting of two solids and water with the formation of a double salt.
- 13. What is a coupled phenomenon? Discuss the entropy production in a coupled phenomenon.
- 14. Calculate the relative Boltzmann population of two vibrational energy levels that are separated by 2000 cm⁻¹ at 27°C.
- 15. Derive an expression for the translational entropy of a monoatomic gas.
- 16. Describe the application of Bose-Einstein statistics to the theory of paramagnetism.
- 17. Calculate the rate constant for the decomposition of hydrogen iodide at 700 K, using collision theory formula. (Given: Ea = $198.4 \text{ kJ mol}^{-1}$ and Collision diameter of HI = 3.5 A^{0}).
- 18. Explain the equilibrium and steady state approach for the study of homogeneous catalytic reactions with the help of potential energy diagram.
- 19. Illustrate with an example, any one mechanism of bimolecular surface reactions.
- 20. Discuss the different types of reversible inhibition reaction mechanisms.
- 21. Describe any one flow technique for the study of kinetics of fast reactions.
- 22. Obtain the expressions for the concentrations of A, B and C at time't' for the simplest consecutive reaction, $A \rightarrow B \rightarrow C$.

Part-C

Answer any FOUR Questions.

 $(4 \times 10 = 40)$

- 23a. Derive Gibbs-Duhem equation and mention its significance.
 - b. Calculate the reduction in the chemical potential of toluene at 25°C when a solute is added at a mole fraction of 0.25. (6+4)
- 24. What is Onsager reciprocal relation? How is it verified by the principle of microscopic reversibility?
- 25a. Obtain an expression to show the relation between partition function and equilibrium constant.
 - b. The translational heat capacity at constant volume is 12.47 JK⁻¹mol⁻¹. Calculate its translational energy at 500 K.

 (6+4)
- 26a. Explain the primary salt effect on the kinetics of ionic reactions.
 - b. Calculate the change in enthalpy, entropy and free energy of activation for the bimolecular reaction, $2NO_{2(g)} \rightarrow 3NO_{(g)} + O_{2(g)}$ at 500 K. (Given: Arrhenius parameter, $A = 2 \times 10^9 \text{ s}^{-1}$ and $E_a = 110 \text{ kJ mol}^{-1}$) (5+5)
- 27a. Discuss the effect of substrate concentration on the rate of enzymatic reaction. How can it be verified?
 - b. The presence of 1.0 mM L^{-1} of a competitive inhibitor decreases the initial rate of a reaction catalyzed by a factor of 2.5. Calculate the degree of inhibition if the initial rate is $2.04 \times 10^{-4} \,\mathrm{M \ s^{-1}}$.

(7+3)

- 28a. Prove that the thermal decomposition of acetaldehyde follows fractional order kinetics.
 - b. Explain the kinetics of hydrogen-bromine thermal chain reaction. (4+6)