LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FOURTH SEMESTER - APRIL 2022

UCH 4501 - ELECTROCHEMISTRY

Date: 16-06-2022	Dept. No.	Max.: 100 Marks
	-	l l

Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL Questions.

 $(10 \times 2 = 20 \text{ Marks})$

- 1. Mention any two disadvantages of using standard hydrogen electrode as a reference electrode.
- 2. Express the Weston Cell in the IUPAC Cell notation form and write the cell reaction.
- 3. Calculate the EMF of the following cell at 298 K:

$$Zn \mid Zn^{2^+}(0.1M) \mid\mid Ag^+(0.001M) \mid Ag$$

$$E^{\circ}$$
 Zn2+ | Zn = -0.76 V; E° Ag+ | Ag = +0.80 V

- 4. What are the advantages of using Quinhydrone electrode in the measurement of pH of an aqueous solution?
- 5. Define transport number and mention the factors affecting transport number.
- 6. Sketch the conductometric titration plots of weak acid vs strong base and NaCl vs AgNO₃ titrations.
- 7. Write the expression relating the mean ionic activity of the Na₃PO₄ with its ionic activities.
- 8. Calculate the ionic strength of an electrolyte solution prepared by mixing equal volumes of 0.1M CuSO₄ and 0.05M Na₂SO₄ solutions.
- 9. Define half-wave potential.
- 10. What is diffusion current?

PART – B

Answer any EIGHT Questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 11. Explain the principle involved in the measurement of cell potential using potentiometer.
- 12. Write a brief account on electrochemical series and its applications.
- 13. Deduce the relationships between EMF of an electrochemical cell with ΔG , ΔH and ΔS of the cell reaction.
- 14. What are concentration cells? How are they classified? Give an example for each type.
- 15. Discuss the principle involved in the determination of solubility product of a sparingly soluble salt from EMF measurements.
- 16. State and explain Kohlrausch law of independent migration.
- 17. Predict the conductometric titration plot of mixture of acids containing HCl and CH₃COOH vs standard NaOH and explain the shape of the graph.

Ī

- 18. Define molar conductance. Explain its variation with concentration of electrolyte solution.
- 19. Write a brief account on: i) Electrophoretic effect ii) Asymmetric effect
- 20. Discuss the salient features of Debye-Huckel theory of strong electrolyte.
- 21. Mention the advantages and disadvantages of dropping mercury electrode.
- 22. Explain the following:
 - (i) concentration polarization (ii) decomposition potential

PART - C

Answer any FOUR Questions.

 $(4 \times 10 = 40 \text{ Marks})$

23. (a) Given the following half cells:

$$Cu^{2+} \mid Cu$$
 $E^{\circ} = +0.34 \text{ V}$
 $Zn^{2+} \mid Zn$ $E^{\circ} = -0.76 \text{ V}$
 $Fe^{3+}, Fe^{2+} \mid Pt$ $E^{\circ} = +0.77 \text{ V}$

Write the cell notations, cell reactions and calculate the standard cell potentials of cells that have the following properties: (a) a cell in which copper dissolves (b) the cell with the largest standard cell potential.

- (b) The potential of a hydrogen electrode ($P_{H2} = 1$ atm, T = 298 K) measured against a saturated calomel electrode ($E_{SCE} = 0.242$ V) is -0.150 V. Calculate the pH of the solution.
- 24. Write a brief account on the different types of potentiometric titrations.
- 25. Compare the methods of determining pH of an aqueous solution using hydrogen electrode and glass electrode.
- 26. Discuss the principle involved in the determination of transport number of an ion by Hittorf's method.
- 27. Write a brief account on:
 - (i) Ostwald's dilution law (ii) Arrhenius theory of electrolytic dissociation.
- 28. Describe the Electrochemical theory of corrosion.