LOYOLA COLLEGE (AUTONOMOUS), CHENNAI-600034

M.Sc. DEGREE EXAMINATION-CHEMISTRY

FIRST SEMESTER-November 2014

CH-1814: Quantum Chemistry and Group Theory

_	
I Jata	•
Daic	

Time: Marks: 100

Part-A

Answer all the questions. Each question carries two marks.

- 1. Name the coordinate system that is applied to describe diatomic molecule and give its limits.
- 2. Sirius, one of the hottest known stars, has approximately a blackbody radiation spectrum with λ_{max} at 2600 Å. Estimate the surface temperature of Sirius.
- 3. Show that for a particle in a three dimensional box with lengths, $l_x = l_y = l_z/2$, the energy levels 122 and 114 are accidentally degenerate.
- 4. Verify, whether the energy of a rigid rotor is quantized.
- 5. How many symmetry operations are generated by a C_5 axis?
- 6. Identify the Mulliken notations for the following irreducible representations.

Е	i
1	1
1	-1

- 7. For a particle with position vector, r = 2i-3j+k in m and momentum vector, p = i+2j-2k in kg m/s, calculate the magnitude of the angular momentum.
- 8. Prove the commutation relation $[x, p_x] = ih/2\pi$.
- 9. Deduce the atomic term symbol for boron.
- 10. What is Born-Oppenheimer approximation?

Part-B

Answer any eight questions. Each question carries five marks.

- 11. Find the original energy level of the electron for a line in the Lyman series of hydrogen corresponding to a wavelength of 1.03×10^{-5} cm.
- 12. Show that the function **sin kx sinly sinmz** is an eigenfunction of Laplacian operator (²) and find the eigenvalue.
- 13. Explain the properties of Hermitian operator.
- 14. Derive the expressions for wavefunction and energy for a particle in a rectangular box.
- 15a. Write a note on Bohr's correspondence principle. (3)
- b. Sketch Ψ and Ψ^2 for a particle in one dimensional box when n = 3. (2)
- 16. Find all the symmetry elements and operations present in an octahedron.
- 17. Obtain the character of the matrix of the operations (i) C_4^2 and (ii) S_3^5 .
- 18. Calculate the de Broglie wavelength of the electron in the first Bohr orbit of hydrogen atom(given: r = 0.529Å).

- 19. Write the Slater determinant for the ground state of Helium atom. Show that it is antisymmetric with respect to the exchange of the two electrons.
- 20. Obtain the point at which the probability density of $3d_{z^2}$ orbital will be maximum. Given $\psi_{320} = Cr^2 exp^{(-r/3)} (3cos^2 \theta 1)$ where C contains all the constants.
- 21. Derive an expression for the energy of electron in hydrogen atom.
- 22. Write down the secular determinant for ethylene molecule using Hückel'smethod and obtain expressions for its energy levels.

Part-C

Answer any four questions. Each question carries ten marks.

- 23. Derive time-dependent and time-independent Schrodinger wave equations.
- 24a. Explain quantum mechanical tunneling with any two evidences. (6)
 - b. For a particle of mass 2×10^{-26} g in one dimensional box of length 4.00 nm, calculate the wavelength of the photon emitted when the particle goes from n = 3 to n = 2 level. (4)
- 25a. Set up the Schrodinger wave equation for a simple harmonic oscillator and solve it for the energy eigenvalues. (7)
- b. Express the Cartesian coordinates (1,0,0) in terms of spherical coordinates. (3)
- 26. How will you obtain the IR and Raman active vibrational modes of *trans*-1,2-dichloroethene molecule, using the C_{2h} character table provided? Prove that the molecule obeys mutual exclusion principle.

C _{2h}	Е	C_2	i	$\sigma_{\rm h}$		
A_{g}	+1	+1	+1	+1	R _z	x^2 , y^2 , z^2 , xy
B_{g}	+1	-1	+1	-1	R_x, R_y	xz, yz
Au	+1	+1	-1	-1	Z	-
B_{u}	+1	-1	-1	+1	x, y	-

- 27a. Solve the radial eigenfunction for $R_{2,0}(r)$.
- (6)
- b. Verify whether the following pair of operators commute: d^2/dx^2 and x. (4)
- 28. Find the first order correction to the energy term when an electric field of strength 'F' is applied to the electron in a one dimensional box of length L. Given: $\psi = (2/L)^{1/2} \sin(n\pi x/L)$.
