LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – CHEMISTRY

FIRST SEMESTER - NOVEMBER 2016

16PCH1MC03 / CH 1808 / CH 1814 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 07-11-2016	Dept. No.	Max.: 100 Marks
m' 01 00 01 00		

Time: 01:00-04:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Normalise the wave function, $= A \sin(\frac{n\pi x}{a})$ for a particle in one dimensional box of length 'a'.
- 2. Calculate the de Broglie wave length for an electron with a kinetic energy of 100 eV.
- 3. State Bohr's correspondence principle.
- 4. Calculate the energy for the transition from n = 2 to n = 3 state for an electron in a one dimensional box of length 5.78 Å.
- 5. Draw the radial distribution plot for 2p and 3d orbitals of H-atom and indicate the nodes.
- 6. Identify the symmetry elements present in POCl₃ molecule.
- 7. Obtain the characters for $2p_x$ orbital with respect to the symmetry operations of C_{2v} point group.
- 8. What is the Mulliken symbol for a two dimensional representation which is anti-symmetric with respect to horizontal plane?
- 9. How will you write the acceptable wave function for an atom containing two electrons?
- 10. Write the Hamiltonian for helium atom and mention the terms involved.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Calculate the wave length in A of the second line in Paschen series of hydrogen spectrum.
- 12 a. Convert the coordinate, $(2, \frac{\pi}{4}, 5)$ into Cartesian coordinate.
 - b. Show that the value of Stefan-Boltzmann constant is $5.66 \times 10^{-8} \text{ J m}^{-2} \text{ K}^{-4} \text{ s}^{-1}$ (3+2)
- 13. Determine the energy required for the transition from $n_x = n_y = n_z = 1$ to $n_x = n_y = 1$, $n_z = 2$ state for an argon atom (atomic mass = 39.95 g mol⁻¹) in a cubic container with 1.0 cm side.
- 14. Explain any two evidences for quantum mechanical tunneling.
- 15. The microwave spectrum of ³⁹K¹²⁷I consists of a series of lines with almost constant spacing of 3634 Hz. Calculate the bond length of ³⁹K¹²⁷I.
- 16. Apply variation theorem to the probability of finding the particle in one dimensional box of length 'l' using the trial wave function, = x (l x).
- 17. If a horizontal plane of symmetry is added to D_2 point group, find the resulting point group and list its symmetry operations.

- 18. Predict the point group of BeF₂ and PCl₃ molecules with the list of the operations.
- 19. The three1s orbital of hydrogen of ammonia molecule have the character given below

Е	2C ₃	$3\sigma_{\rm v}$
3	0	1

Identify the irreducible representations using the character table given below.

C_{3v}	Е	2C ₃	$3\sigma_{\rm v}$
A_1	1	1	1
A_2	1	1	-1
Е	2	-1	0

- 20. What are resonance and coulomb integrals? Obtain their expressions.
- 21. Prove that the angular momentum and kinetic energy of a particle can be measured simultaneously to an arbitrary precision.
- 22. Evaluate the commutator [Lz,Lx] and mention its significance.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

23 a. Explain the postulates of quantum mechanics.

(7+3)

- b. Calculate the eigenvalue, if the function, $\frac{1}{\pi} \sin(3.63x)$ is an eigenfunction of operator $\frac{-h^2}{8\pi^2 m} \frac{d^2}{dx^2}$.
- 24. Solve the Schrodinger equation for simple harmonic oscillator and obtain its energy levels.
- 25. Use the method of separation of variables to break up Schrodinger equation for hydrogen atom into ordinary angular equations and write the solutions for each.
- 26 a. Construct C_{2h} character table using the Great orthogonality theorem.
 - b. What is transition probability integral? Mention its importance.

(6+4)

- 27 a. How are the symmetry operations of D_{3h} point group classified?
 - b. Solve the secular determinantel equations of allyl cation and allyl anion for their delocalization energy.

(4+6)

- 28 a. Obtain expressions for the energy of the molecular orbitals of hydrogen molecular ion using variation method.
 - b. Verify whether an energy state with term symbol ${}^2P_{5/2}$ can exist.

(7+3)
