

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - NOVEMBER 2016

CH 1506/CH 1503/CH 1500 - BASIC CONCEPTS IN INORGANIC CHEMISTRY

Date: 05-11-2016 Dept. No. Max. : 100 Marks	Date: 05-11-2016	Dept. No.		Max. : 100 Marks
---	------------------	-----------	--	------------------

Time: 01:00-04:00

PART- A

Answer ALL questions

(10x2 = 20 marks)

- 1. 'K⁺ and Cl⁻ are isoelectronic, yet ionic radii differ'. Why?
- 2. Define inert pair effect. Cite an example.
- 3. How is ionic bond formed?
- 4. Define enthalpy of solution.
- 5. Why does He₂⁺ exist whereas He₂ does not?
- 6. Write the electron dot formula of ammonia molecule.
- 7. What are London forces?
- 8. What are clathrates? Give an example.
- 9. What is conjugate acid base pair? Give an example.
- 10. Classify the following as acid and base on the basis of Lowry- Bronsted concept: NH₃, H₂S, H₃PO₄, HCO₃

PART-B

Answer any **EIGHT** questions

(8x5 = 40 marks)

- 11. Write notes on the postulates of Bohr's theory of atoms.
- 12. State and explain Pauling scale of electronegativity.
- 13. (i) What is dual character? Derive De Broglie equation.
 - (ii). Mention the factors which affect lattice energy.
- 14. State and explain Fajan's rule.
- 15. Describe Born- Haber cycle for the formation of ionic compounds.
- 16. Explain the geometry of ammonia using valence bond theory.
- 17. Discuss the structure of XeF₆ using valence shell electron pair repulsion theory.
- 18. Explain the electron sea model of metallic atoms.
- 19. Write notes on Vanderwaal's forces and dipole dipole interaction.
- 20. What happens when alkali metals are treated with liquid ammonia?
- 21. Balance the following redox reaction, using oxidation number method:

$$MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$$

- 22. (i). What are the limitations of octet rule?
 - (ii) What is double decomposition reaction? Give an example.

- 23. State modern periodic law. Give a brief account on long form of periodic table.
- 24. Write notes on the factors favoring the formation of ionic compound.
- 25. Account the magnetic property and stability of O₂ and N₂ using Molecular Orbital diagram.
- 26. What is hydrogen bond? Give a brief account on the type of hydrogen bond with suitable example.
- 27. Compare and contrast the following reactions in liquid ammonia and aqueous medium:
 - (i). Precipitation reaction between KCl and AgNO₃
 - (ii). Neutralisation reaction with HCl
 - (iii). Urea
 - (iv). Complex formation reaction
 - (v). Metallic salt
- 28. (i). State Allred and Rochows approach of electronegativity.
 - (ii). Define lattice energy.
 - (iii). Of the species O₂, O₂⁺, O₂⁻, O₂²⁻ which would have the maximum bond strength?
 - (iv). Mention the unique properties of water.
 - (v). State the Arrhenius concept of acids and bases.
