

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - NOVEMBER 2016

CH 2821 - MOLECULAR SPECTROSCOPY

Date: 17-11-2016 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

Part-A

Answer ALL questions.

 $(10\times 2=20)$

- 1. State the reason for the exceptionally low carbonyl stretching frequency of 2,4,6-cycloheptatrienone in IR spectroscopy.
- 2. Why does the IR spectrum of benzoyl chloride show a band at 1770 cm⁻¹ with a shoulder at 1740 cm⁻¹?
- 3. Calculate the concentration of camphor in hexane in a 10 cm cell with absorbance of 2.52 at 295 nm ($\varepsilon = 14 \text{ cm}^{-1} \text{ L mol}^{-1}$).
- 4. Azobenzene is a deep orange red while hydrazobenzene is colourless- Account.
- 5. How will you distinguish among three isomeric butanols on the basis of mass spectrometry?
- 6. Obtain the NMR frequency of proton in a magnetic field of strength 1.5 T. Given: $g_e = 5.5$.
- 7. Predict the number of signals possible in the proton decoupled ¹³C NMR spectrum of toluene.
- 8. Mention the significance of asymmetric parameter.
- 9. Account for the doublet observed in the Mossbauer spectrum of Fe(CO)₅.
- 10. What is hyperfine splitting?

Part-B

Answer any EIGHT questions.

 $(8\times 5=40)$

- 11. The first line in the rotational spectrum of CO occurs at 3.8424 cm⁻¹. Calculate its rotational constant and bond length. The atomic mass of C is 12 g/mol and O is 15.99 g/mol.
- 12. Explain the IR spectrum of toluene, which shows absorptions at 3030, 2850-2960, 1600, 1580, 1460, and 730-770 cm⁻¹.
- 13. Explain the Stark effect of a linear molecule using rotational spectra.
- 14. Calculate λ_{max} for the following:

- 15. Predict the structure of the compound, which shows m/e peaks at 88, 70, 57, 43, 31 (much intense) and 29 in its mass spectra.
- 16. Determine the structure of the compound (molecular weight of $C_8H_{14}O_3$ is 158) which absorbs in the UV region at 225 nm. In IR spectrum, IR absorption bands are formed at 3077-2855 (m), 1825 (s), 1757 (m) and 1456 cm⁻¹ (m). In NMR, two signals are observed at 7.30 τ septet and 8.80 τ doublet.
- 17. How will you differentiate primary, secondary and tertiary amines using ¹H NMR?
- 18. What is coupling constant? How does it vary with dihedral angle?
- 19. Sketch the number of orientations and transitions possible for a low spin d¹ octahedral complex.
- 20. What is zero field splitting? Explain the causes of zero field splitting.
- 21. How is quadrapole resonance useful to determine the point group of a molecule?
- 22. Explain Franck-Condon principle to account for the intensity of electronic transitions.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23 a. Using Mohr's curve explain the vibrational energy of a diatomic molecule. (5)
 - b. An organic compound with molecular weight 120 shows a prominent peak at 105 in its mass spectrum. It also shows a positive response towards iodoform test. Identify the structure of the compound and predict its mass spectral pattern. (5)
- 24 a. If the bond length of hydrogen is 0.07417 nm, calculate the position of the first three rotational Raman lines in the spectrum if the mass of hydrogen is 1.673 x 10⁻²⁷ kg. (5)
 - b. How will you account for the origin of overtones and combination bands? (5)
- 25. An organic compound absorbs at $\lambda_{max} = 210$ nm, ($\varepsilon_{max} = 60$) in UV spectrum. In NMR, it shows a triplet (8.71 τ , J = 7.2 cps), quartet (5.84 τ , J = 7.2 cps) and singlet (7.5 τ). It shows IR absorptions at 2940 (m), 2855 (m), 1742 (s), 1460 (m), 1260 (s), and 1055 cm⁻¹ (s). It shows a molecular ion peak at m/e = 60. Identify the structure of the compound and predict its mass spectral pattern.
- 26 a. Discuss the principle of HeteroCOSY with an example. (6)
 - b. Mention the importance of shift reagents in NMR. (4)
- 27 a. Explain hyperfine coupling with equivalent and non-equivalent protons. (6)
 - b. ³⁵Cl nucleus requires Zeemann effect to determine its quadrupole parameters- Expain.
- 28 a. Explain the effect of octahedral geometry of K₄[Fe(CN)₆] in its quadrupole resonance and Mossbauer transitions.
 - b. Obtain the value of Lande-Splitting factor for the ground state term symbol ${}^{1}P_{0}$. (4)
