# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034



# M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - NOVEMBER 2016

#### CH 2954 - NUCLEAR AND RADIO CHEMISTRY

| Date: 14-11-2016  | Dept. No. | Max.: 100 Marks |
|-------------------|-----------|-----------------|
| Time: 01:00-04:00 |           |                 |

#### Part-A

## Answer ALL questions.

 $(10\times 2=20)$ 

- 1. What are nuclear isomers?
- 2. Define binding energy of a nucleus.
- 3. State the importance of neutrons in stabilizing a nucleus.
- 4. Define life time  $\tau$  of nucleii. How is this factor related to decay constant,  $\lambda$ ?
- 5. What is Auger effect?
- 6. How are thermal neutrons obtained?
- 7. List out the reasons for not using nuclear fusion reactions to tap energy.
- 8. Explain Radioactive series.
- 9. Write Geiger- Nuttal rule and its application.
- 10. What is meant by enriched uranium? What is its significance?

## Part-B

## Answer any EIGHT questions.

 $(8\times 5=40)$ 

- 11. Give an account of mesons.
- 12. Explain one model to understand solvated electrons.
- 13. Discuss the demerits of liquid drop model of nucleus.
- 14. What are scintillation counters? Cite an example for the compound used in it.
- 15. Mention some characteristics of solvated electrons.
- 16. What type of nuclei undergo electron capture?
- 17. How is the radius of a nucleus calculated theoretically?
- 18. How are charged particles accellerated?
- 19. How are the magic numbers explained by shell model?
- 20. Describe induced radio activity with an example.
- 21. Explain the principle of carbon dating.
- 22. An isotope of an element X is  $^{239}X_{90}$ . This isotope emitted four  $\alpha$  particles and four  $\beta$  particles to form a nucleus Y. What is the isotope Y?

### Part-C

# Answer any FOUR questions.

 $(4 \times 10 = 40)$ 

- 23. Explain any four spontaneous processes of nucleus.
- 24. Discuss the factors affecting stability of a nucleus
- 25. Discuss the use of nuclear chemistry in medical field.
- 26. Derive an equation for the theoretical calculation of binding energy of a nucleus using liquid drop model.
- 27. Explain neutron activation analysis and mention the advantages of this technique.
- 28. Write notes on the following in about 100 words each:

[a] Collective model of nucleus

[b] Scintillation counters

[c] Chemical dosimeters

[d] Hot atom chemistry

\*\*\*\*\*