LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2016

CH 3810 - MOLECULAR SPECTROSCOPY

Date: 05-11-2016	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00	_	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Calculate the uncertainty in the excited state energy level when a molecule makes a transition between the ground and excited state with a lifetime of 10^{-3} s.
- 2. Mention the difference between prolate and oblate symmetric top molecules.
- 3. The normal modes of vibration of CO_2 molecule are v_1 =1330, v_2 =667 and v_3 =2349 cm⁻¹. Calculate its zero point energy.
- 4. What is the difference between mechanical and electrical anharmonicity?
- 5. Why are anti-Stokes lines less intense than Stokes lines?
- 6. Sketch the ¹⁹F NMR of ClF₃ molecule.
- 7. What are Kramer's doublets?
- 8. Isomer shift is a function of 's' electron density-Justify.
- 9. The EPR spectrum of the radical AB₃• shows 6 lines. Calculate the spin of the atom A.
- 10. Define coupling constant.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. The fundamental and first overtone transition of $^{14}N^{16}O$ are centered at 1876.06 cm⁻¹ and 3724.20 cm⁻¹ respectively. Evaluate the equilibrium vibration frequency and zero point energy. Mass of $^{14}N = 23.25 \times 10^{-27}$ kg and mass of $^{16}O = 26.56 \times 10^{-27}$ kg.
- 12. Calculate the average period of rotation of HCl molecule if it is in the J = 1 state. The internuclear distance of HCl is 0.1274 nm. The mass of hydrogen and chlorine atoms are 1.673 x 10^{-27} kg and 58.06 x 10^{-27} kg, respectively.
- 13. What are the causes of overtones and difference bands?
- 14. The first 3 stokes lines in the rotational Raman spectrum of $^{16}O_2$ are separated by 14.4, 25.8 and 37.4 cm⁻¹ from the exciting radiation. Using the rigid rotor model, obtain the value of r_0 .
- 15. Explain the factors affecting the intensity of the spectral lines.
- 16. Discuss the Stark effect of $J=0 \rightarrow J=1$ transition for a linear molecule.
- 17. Account for the following.
 - i) EPR spectra are recorded in first derivative mode.
 - ii) EPR is recorded in microwave region.
- 18. Discuss diamagnetic anisotropy with an example.
- 19. Explain the factors influencing geminal and vicinal coupling in NMR.
- 20. How are molecular ion and isotope peaks useful in the determination of molecular formula?
- 21. Explain the quadrupole transitions possible in spherically and axially symmetric fields.
- 22 a. Calculate the chemical shift of a ¹H-NMR signal which appears at 180 Hz in a 60 MHz instrument. Find out the frequency at which the same signal would appear in a 100 MHz instrument. (3)
 - b. What is FID? (2)

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23 a. Apply the selection rules for parallel and perpendicular vibrations of a symmetric top molecule and explain the formation of P, Q and R branches. (5)
 - b. The equilibrium vibration frequency of iodine molecule is 215 cm⁻¹ and the anharmonicity constant is 0.003. What is the intensity of the hot band $v = 1 \rightarrow v = 2$
 - relative to that of the fundamental $v = 0 \rightarrow v = 1$, if the temperature is 300K? (5)
- 24. Explain the rotational Raman spectra of a linear molecule with an example.
- 25 a. Discuss the various types of transitions possible in electronic spectroscopy. (5)
 - b. State the principle of i) PES and ii) Fluorescence. (5)
- 26 a. Explain the principle of heterocorrelation spectroscopy with an example. (6)
 - b. Compare the ¹H-NMR spectra of PH₃ and NH₃ molecules. (4)
- 27a. What is quadrupole splitting? How will you account for the quadrupole splitting shown by Fe(CO)₅ molecule? (6)
 - b. Predict the number of EPR transitions possible for low spin d⁷ octahedral complex. (4)
- 28. What is the principle of Mossbauer spectroscopy? Explain the spectral features of low and high spin iron complexes.
