LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – CHEMISTRY

THIRD SEMESTER - NOVEMBER 2016

CH 3814 - THERMODYNAMICS & CHEM. KINETICS

Date: 03-11-2016 Dept. No. Max. : 100 Marks
Time: 09:00-12:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. What is Ellingham plot?
- 2. What is an isothermal saturation curve?
- 3. State Prigogine's principle of minimum entropy production.
- 4. Calculate the number of ways of distributing four molecules in four energy levels so that there are two molecules in the level E_0 , 1 molecule in E_1 , 1 molecule in E_2 and zero in level E_3 .
- 5. Calculate the vibrational partition function of molecular hydrogen at 300 K, assuming it to be a harmonic oscillator. Given that $\omega = 4405 \text{ cm}^{-1}$.
- 6. What are contour diagrams?
- 7. At 300 K, the rate constants in dm³ mol⁻¹s⁻¹ for the alkaline hydrolysis of m-chloroethyl benzoate and p-methoxyethylbenzoate are 0.454 and 0.0114, respectively. Calculate the reaction constant. (Given: σ for m-Cl and p-OMe are +0.37 and -0.27, respectively.)
- 8. Compare the pre-exponential factors obtained for the reactions between molecules (A_m) and atoms (A_a).
- 9. The presence of 1.0 mM L^{-1} of a competitive inhibitor decreases the initial rate of a reaction catalyzed by a factor of 2.5. Calculate the degree of inhibition if the initial rate is $2.04 \times 10^{-4} \,\mathrm{M \ s^{-1}}$.
- 10. Distinguish between stationary and non-stationary chain reactions.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Discuss any two methods of determination of partial molar properties.
- 12. At 500° C, the EMF of the cell Ag(s) | AgBr(N₁) in fused LiBr | Br₂(g), is 0.7865 V when the electrolyte is pure AgBr; the E.M.F is 0.8085 V, when the mole fraction (N₁) is 0.5937. Calculate the activity coefficient in the latter case, the standard state being taken as pure liquid AgBr.
- 13. Explain: (a) Mechanocaloric effect (b) Relation between irreversible thermodynamics and biological systems.
- 14. Calculate the entropy change of one mole of helium when it is heated from 300 K to 600 K at constant pressure.
- 15. Obtain the relation between internal energy and partition function.
- 16. Calculate the translational partition function of a molecule of oxygen gas at 1 atm and 298 K moving in a vessel of volume 24.4 dm³.
- 17. Derive Eyring equation relating thermodynamic parameters of a reaction.

- 18. Explain Langmuir-Hinshelwood mechanism for bimolecular surface reactions with an example.
- 19. Discuss any one flow technique to study the kinetics of fast reactions.
- 20. Explain the kinetics of reaction between hydrogen and bromine.
- 21. Describe the effect of substrate concentration on the kinetics of enzyme catalysis.
- 22. Consider the following reaction, $NH_4^+_{(aq)} + NO_2^-_{(aq)} \rightarrow N_{2(g)} + H_2O_{(l)}$, at 25°C. Determine the rate law and rate constant for the reaction using the following data.

[NH ₄ ⁺], mol/L	[NO ₂ -], mol/L	Rate, mol/L/s
0.24	0.10	7.2×10^{-6}
0.12	0.10	3.6×10^{-6}
0.12	0.15	5.4 × 10 ⁻⁶

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Derive Gibbs-Duhem equation and mention its significance.
 - b. Sketch the phase diagram and arrive at the degrees of freedom for all the regions of a ternary system leading to the formation of double salt formation.
- 24a. Explain Onsager theory in the light of phenomenological reciprocal relationship.
 - b. Write a note on thermoelectricity.
- 25a. Derive Bose Einstein distribution law using its assumptions.
 - b. The first excited state of chlorine atom ${}^2P_{1/2}$ lies at 0.11 eV above the ground state ${}^2P_{3/2}$. Calculate the electronic partition function of chlorine at 500 °C.
- 26a. Derive an expression for the concentrations of A and B at time t for an opposing reaction, both forward and backward reactions following first order reaction kinetics.
 - b. State the principle of relaxation technique.

(8+2)

- 27a. Discuss the kinetics of a combination reaction following energy transfer mechanism.
 - b. The molecular radius of nitrogen and oxygen are 1.58×10^{-8} cm and 1.46×10^{-8} cm respectively. When 2.45×10^{19} molecules of each are mixed in the reaction vessel at 27° C, calculate the number collisions per second between nitrogen and oxygen molecules in one cm³ (Given: molecular masses of N₂ and O₂ are 28 and 32 g mol⁻¹ respectively). (6+4)
- 28 a. Explain the effect of added salt on the rates of ionic reactions.
 - b. The rate of a reaction catalyzed by carbonic anhydrase is 1.05×10^{-5} mol dm⁻³ s⁻¹ when the substrate concentration is 2.0×10^{-3} mol dm⁻³. Calculate Michaelis constant if the limiting rate of the reaction is 7.93×10^{-5} mol dm⁻³s⁻¹. (7+3)
