LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc.DEGREE EXAMINATION - CHEMISTRY

FIRSTSEMESTER - NOVEMBER 2017

17/16PCH1MC03/CH1814/CH1808 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 08-11-2017 Dept. No. Max. : 100 Marks
Time: 01:00-04:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. List the first two eigen functions and the eigen values for a particle in a one dimensional box of length 'l' when the origin of the coordinate system is at the middle.
- 2. The work function of a metal is 2.91×10^{-19} J. Calculate the threshold wavelength of the metal.
- 3. Show that ' $\sqrt{\ }$ ' is a non-linear operator.
- 4. Determine the value of normalization constant and Hermite polynomial for the vibrational quantum number, n=1.
- 5. State Euler's formula and use it to prove $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.
- 6. Obtain the trace of the matrix for the operation C_4^2 .
- 7. Identify the symmetry elements present in H_2O_2 molecule.
- 8. Why is it that a molecular plane always forms a class by itself?
- 9. Write the acceptable wave function for an atom with two electrons.
- 10. What is variational integral?

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. In the infrared spectrum of $^{39}K^{35}Cl$ an intense line is seen at $\bar{\nu}$ 378.0 cm⁻¹. Calculate the force constant and zero point energy of $^{39}K^{35}Cl$.
- 12. Derive the expression for wave function and energy for a particle in a three dimensional rectangular box of dimensions a, b and c.
- 13. Show that the wave functions describing 1s orbital are normalized.

Given:
$$\Psi_{1s} = \frac{1}{\sqrt{\pi}} (\frac{Z}{a_0})^{\frac{3}{2}} e^{-\frac{Zr}{a_0}}$$

- 14. Derive the time-independent Schrodinger wave equation.
- 15a. Determine the wave length (in Å) for the third line in Balmer series of hydrogen atomic spectrum.
 - b. Prove that $3e^{-8x}$ is an eigen function of secondorder differentiation. Find its eigen value.

(3+2)

- 16. Write the Schrodinger equation for hydrogen atom and solve it for its energy using a simple solution, which assumes the wave function to depend only on the distance r and not on the angles θ and ω .
- 17. Show that $[L^2, L_x] = 0$.
- 18. Obtain the values of L, S and J for the term symbol ${}^{3}F_{2}$.

- 19. Generate the transformation matrices for the identity operation upon π and π^* orbitals and obtain their characters.
- 20. List down the symmetry elements and operations present in a tetrahedron.
- 21. How will you account for the transitions observed in the atomic spectrum of sodium?
- 22. Show that the total wave function that is antisymmetric in the exchange of coordinates of every pair of electrons does not violate the Pauli exclusion principle.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

(6+4)

- 23a. Outline the essential postulates of quantum mechanics.
 - b. How much is the distance of the point $(8, \frac{1}{2}, \frac{\pi}{2})$ away from the origin with the major axis of 10 units?
- 24a. Apply variation theorem to the probability of finding the particle in one dimensional box of length 'l' using the trial wave function, $\psi = x (l x)$.
 - b. Explain quantum mechanical tunneling with evidence. (6+4)
- 25a. Work out the polar and azimuthal wave equations from Schrodinger equation of a rigid rotor and solve them.
 - b. Find the angular and radial nodes for 2p and 3d orbitals. (8+2)
- 26a. How will you normalize the molecular orbital in the equation $\psi = N\{\psi_{1s}(A) + \psi_{1s}(B)\}$?
 - b. Find the irreducible components of representations generated by a set of σ bonds present in NH₃ molecule using the C_{3v} character table provided.

(4+6)

C _{3v}	Е	2C ₃ (z)	3 o _v		
A_1	+1	+1	+1	Z	x^2+y^2, z^2
A_2	+1	+1	-1	R _z	-
E	+2	-1	0	$(x, y) (R_x, R_y)$	$(x^2-y^2, xy) (xz, yz)$

- 27a. Describe the simple Huckel molecular treatment of 1,3-butadiene to obtain its π electronic energy.
 - b. What are Bosons and Fermions?

(7+3)

- 28 a. Outline the construction of C_{2h} character table using great orthogonality theorem.
 - b. How are the symmetry operations in PCl₅ molecule classified?

(5+5)

\$\$\$\$\$\$\$\$\$\$