LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

THIRD SEMESTER - NOVEMBER 2017

CH 3504 - THERMODYNAMICS

Date: 04-11-2017	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		ı

Part A

Answer all questions (10 x 2 = 20 marks)

- 1. State the First law of thermodynamics.
- 2. What is Inversion temperature?
- 3. Define heat of neutralization. Write its unit.
- 4. Write the relation between enthalpy and internal energy.
- 5. What is the need for Second law of thermodynamics?
- 6. Complete A = _____
- 7. Define Le Chatlier Braun Principle
- 8. Complete Kp = _____ Kc
- 9. Give the expression for the equilibrium constant for the dissociation of ammonia
- 10. What happens to G and S in a r eversible process?

Part B

Answer any eight questions

 $(8 \times 5 = 40 \text{ marks})$

- 11. Distinguish between (a) Isothermal and Adiabatic Process
 - (b) Enthalpy and Entropy.
- 12. Explain the postulates of Kinetic theory of gases
- 13. Derive the van der Waals equation of state.
- 14. Calculate the reversible work done by 8 moles of an ideal gas during the expansion from 5dm^3 to 15dm^3 on the surroundings at 50° C.Calculate Δ H also.
- **15.** (a) The heat involved in dissolvingCuSO₄ (s) in water is 86.6 KJ/mol. If ΔH_f° (Cu $^{2+}$) is 64.4kJ/ mol .What is H_f° (SO₄ $^{2-}$)? Given H_f° (CuSO₄) =-770KJ/mol.(b) Define Hess's law. (3+2)
- 16. Derive how ΔG varies with temperature and pressure.
- 17. (a) Calculate ΔG when 1mle of an ideal gas expands reversibly and isothermally at 37°c from an initial volume of 55dm^3 to 1000dm^3 . (b) Write the physical significance of entropy. (2+3)
- 18. (a)100% efficiency in a heat engine cannot be achieved. Explain.(b) Calculate the maximum efficiency of an engine operating between 110°c and 25°c.
- 19. Apply Lechatlier's principle for the synthesis of ammonia by Haber's process and explain.
- 20. Derive Van't Hoff equation
- 21. Explain Nernst Heat Theorem. How does it lead to the enunciation of III law of thermodynamics?

Part C

Answer any four Questions

 $(4 \times 10 = 40 \text{ marks})$

(5+5)

- 22. What state and path functions? Explain each with an example.
- 23. (a) Prove that Cp Cv =R for an ideal gas. (b) Derive Kirchoff equation
- 24. Explain a method to measure the enthalpy of Combustion.
- 25. Derive entropy change of an ideal gas when (a) T and V are two variables
 - (b) T and P are two variables.
- 26. (a) The value of Kp for the reaction

$$CO_{(g)} + H_2O_{(g)} \leftrightarrow CO_{2(g)} + H_{2(g)}$$
 is 1.06×10^5 at 25° c. Calculate ΔG for the reaction. (4)

- (b) With the help of Le Chatlier Braun principle explain the effect of temperature and pressure on the dissociation of Nitrogen tetroxide. (6)
- 27. Derive the Van't Hoff Reaction isotherm
- 28. Determine the absolute entropy of a gas at 25°c under atmospheric pressure
