LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2017

CH 3812- CHEMICAL KINETICS

Date: 09-11-2017	Dept. No.	Max. : 100 Mark
------------------	-----------	-----------------

Time: 09:00-12:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Define 'true order' of a reaction.
- 2. Mention the factors that affect the rate of a chemical reaction.
- 3. Calculate the activation energy of a reaction whose rate constant increases two times by a rise of 10 °C from a temperature of 27 °C.
- 4. The rate constant for a second order reaction with equal concentration is 3.33 × 10⁻² dm³ mol⁻¹s⁻¹. Calculate its half-life if the initial concentration of the reactant is 0.05 mol dm⁻³.
- 5. What is meant by capillary condensation?
- 6. How does volume of activation affect the rate of a reaction insolution?
- 7. State Lindemann-Christiansen hypothesis of unimolecular reactions.
- 8. Define Hammett acidity function.
- 9. Write the mechanism for the thermal decomposition of acetaldehyde.
- 10. Why did conventional techniques fail in studying fast reactions?

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 1. Derive the expression for collision number of a bimolecular reaction.
- 12. Explain the significance of potential energy surfaces with an example.
- 13a. The rate of a reaction between the aqueous solutions of two singly charged cations in anionic strength of 0.035 moldm⁻³ is 2.42 L²mol⁻²min⁻¹. Find the rate constant at zero ionic strength using Bronsted-Bjerrum equation.
 - b. What is meant by secondary salt effect?

(3+2)

- 14. Derive Stern Volmer equation and explain how it can be verified.
- 15. For a weak base, 2-nitroaniline (B) in 0.02 M HClO₄ the ratio of [BH⁺] to [B] is found to be 0.01. Calculate pK_{BH+} for 2- nitroanilinium ion.
- 16. Derive the expressions for the concentrations of A, B and C for a consecutive reaction, A→B→C.
- 17. Explain any one mechanism of bimolecular surface reactions.
- 18. A gas phase unimolecular reaction has energy of activation of 49.6 kJ mol⁻¹. At 55 °C the rate constant for the reaction is 0.23 s⁻¹. Calculate the enthalpy and entropy of activation at 55 °C.
- 19. Describe the influence of dielectric constant on the rate of ionic reactions in solution.
- 20. Explain the reversible enzyme inhibition reactions with suitable mechanism.
- 21. Distinguish between Arrhenius and van't Hoff intermediates formed in homogeneous catalytic reactions.
- 22. Derive the expression for relaxation rate constant and relaxation time for a fast reaction.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23. a. Derive Eyring equation connecting rate constant and partition function of reactants.
- b. Compare the rate constant expressions obtained by transition state and collision theories for the reaction between two atoms. (5+5)
- 24. Differentiate the following: (a) Thermal and photchemical reactions
 - (b) Physisorption and chemisorption (c) order and molecularity.

(3+4+3)

- 25. a. Write a note on Skrabal plots.
 - b. How is surface area of a solid determined using BET equation?

(5+5)

- 26. a. Explain the kinetics of a combination reaction following energy transfer mechanism.
 - b. Calculate the rate constant for a diffusion-controlled second order reaction between two non-ionic solutes A and B using Smoluchowski equation. Given: $r_A = 2.0 \text{ Å}$, $r_B = 3.0 \text{ Å}$, $D_A = 1.212 \times 10^{-9} \text{ m}^2 \text{ s}^{-1}$ and $D_B = 8.08 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$. (7+3)
- 27a. Explain the effect of substrate concentration on the rate of an enzymatic reaction.
- b. In a typical Lineweaver-Burk plot of 1/rate vs 1/[S], the slope and Y- intercept are 40.0 and 2.0 respectively. Determine the maximum rate and K_M value if the concentration is in mmol/L and time in seconds. (7+3)
- 28 a. Discuss the kinetics of hydrogen-bromine thermal chain reaction.
 - b. Show that the mathematical expression of rate constant for a simple first order and reversible first order reactions is the same. (7+3)
