LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2017

CH 920 - CHEMICAL KINETICS

Date: 10-11-2017	Dept. No.	Max. : 100 Marks
Time: 00:00 10:00	L	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Write the assumptions of conventional transition state theory.
- 2. Calculate the half-life of the decomposition reaction at 600 K with rate constant 3.72×10^{-5} s⁻¹.
- 3. What are Skrabal plots?
- 4. Mention the significance of Hammett acidity function.
- 5. What is meant by capillary condensation?
- 6. Why a reaction is exothermic if the adsorption is spontaneous?
- 7. State the principle of temperature jump technique for studying the kinetics of fast reactions.
- 8. Distinguish between stationary and non-stationary chain reactions.
- 9. Determine the enthalpy of activation for a reaction at 298 K having Gibbs energy and entropy of activation of 97.2 kJ mol⁻¹ and -151.1 J K⁻¹mol⁻¹ respectively.
- 10. Compare thermal and photochemical reactions.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Derive Bronsted-Bjerrum equation for ionic reactions in solutions.
- 12. Explain the need for the potential energy surfaces in the reaction kinetics.
- 13. Describe any two methods of determining order of a reaction.
- 14. The molecular radius of nitrogen and oxygen are 1.58×10^{-8} cm and 1.46×10^{-8} cm respectively.

When 2.45×10^{19} molecules of each are mixed in the reaction vessel at 27° C, calculate the number collisions per second between nitrogen and oxygen molecules in one cm³ (Given: molecular masses of N_2 and O_2 are 28 and 32 g mol⁻¹ respectively).

- 15. Discuss the kinetics of consecutive reactions with a relevant graph.
- 16. At 30°C in 80% ethanol, the rate constants in dm³mol⁻¹s⁻¹ for the hydrolysis of m-chloroethylbenzoate and p-methoxyethylbenzoate are 0.454 and 0.0114 respectively. Given that σ values of m-Cl and p-OMe are +0.37 and -0.27 respectively. Calculate the reaction constant ρ.
- 17. Explain the kinetics of bimolecular quenching reaction and hence derive Stern-Volmer equation.

- 18. Discuss the kinetics of opposing reactions.
- 19. Derive the expression for Langmuir adsorption isotherm.
- 20. Explain flash photolysis technique with a neat diagram,
- 21. Show that Bronsted catalytic law is a form of linear free energy relationship.
- 22. Compare the rate constant expressions derived by collision and transition state theories for the reaction between atoms.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Discuss the Lindemann Mechanism of unimolecular reactions for the process where the activation of the reactant molecule A takes place only by the collision with a non-reactant molecule M.
- b. At 327°C, the rate constant of a first order reaction is 1.6×10^{-5} s⁻¹. If the temperature is increased by 100°C, the value of rate constant increases to 6.36×10^{-3} s⁻¹. Calculate the activation energy for the reaction. (7+3)
- 24. Differentiate the following: (a) Prototropic and Protolytic mechanisms
 - (b) True and Time orders (c) Arrhenius and Van't Hoff type intermediates. (3+4+3)
- 25a. Explain the kinetics of bimolecular surface reactions with a specific example. Derive the relevant rate law for each mechanism.
 - b. Explain the double sphere model for the influence of dielectric constant on the rate of ion-ion reactions in solution.(5+5)
- 26a. How is surface area of a solid determined using BET equation?
 - b. Explain any one flow technique applied for studying the kinetics of fast reactions. (5+5)
- 27a. Derive Michaelis-Meten equation of an enzymatic reaction.
- b. In a typical Lineweaver-Burk plot of 1/rate vs 1/[S], the slope and Y- intercept are
 40.0and2.0 respectively. Determine the maximum rate and K_M value if the concentration is in

mmol/L and time in seconds. (7+3)

- 28 a. Derive Eyringequation which relates the thermodynamic parameters with the rate constant of the reaction.
 - b. Discuss the kinetics of hydrogen-bromine thermal chain reaction. (5+5)
