

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - NOVEMBER 2019

PCH 1503/17/18PCH1MC03 - QUANTUM CHEMISTRY AND GROUP THEORY

Date: 05-11-2019	Dept. No.	Max. : 100 Marks

Time: 01:00-04:00

Part-A

Answer ALL questions

 $(10 \times 2 = 20)$

- 1. Convert the point (-3,6,8) in cartesian coordinate to cylindrical coordinate.
- 2. Which of the following is an acceptable wave function? e^{-x^2} or e^{-x} .
- 3. Calculate the kinetic energy of the photoelectron emitted with energy 3.10 eV. (Given that = 2.13 eV).
- 4. Find out the value of $H_3(y)$ and their corresponding normalization factor of a harmonic oscillator.
- 5. Mention the significance of Slaters determinant.
- 6. Obtain the ground state term symbol for Nitrogen atom.
- 7. What is coulomb integral? Mention the operator involved.
- 8. Prove that the four C_2 axes in the D_{2h} point group constitute two different classes.
- 9. Show that the p_z orbital belongs to totally symmetric representation in C_{2v} character table.
- 10. Identify the equivalent of the following combined operations: $C_2(z)$ and $_v(xz)$.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Find out whether the operator d/dr is Hermitian for the following eigen functions of a spherically symmetric systems (i) $\psi_1 = e^{-r}$ (ii) $\psi_{12} = e^{-2r}$.
- 12. Discuss the postulates of quantum mechanics.
- 13. Write down the Schrödinger wave equation for simple harmonic oscillator and obtain their Hermite polynomial equation.
- 14. The first line in the rotation spectrum of CO has a frequency of 3.8424 cm⁻¹. Calculate the rotational constant and C-O bond length.
- 15. Apply variation theorem to the probability of finding the particle in one dimensional box of length 'l' using the trial wave function, = Nx (L x).
- 16. Obtain the value of the commutator $[x, p_x]$ and mention its significance.
- 17a. Calculate the zero-point energy of HI molecule. Given the force constant = 314.14 N m⁻¹.
 - b. Write down the Hamiltonian for helium atom. (3+2)
- 18. How many irreducible representations are possible for PF₅ molecule? Mention their dimensions.
- 19. Generate the reducible representation of NH_3 molecule for its vibrational modes using the C_{3v} character table.

	E	2C ₃ (z)	$3\sigma_{\rm v}$	rotations	quadratic			
A ₁	1	1	1	z	x ² +y ² , z ²			
A ₂	1	1	-1	Rz				
E	2	-1	0	(x, y) (R _x , R _y)	$(x^2-y^2, xy) (xz, yz)$			

- 20. C_{3v} and C_{3h} point groups nave the same order out yet their classes are different. Justify.
- 21. Solve the Secular determinant for 1,3-butadiene to obtain MO energies.
- 22. Obtain the Slater determinants for the excited state of Helium atom.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23. a. Derive the time-independent Schrodinger wave equation.
 - b. Show that the function $F = cosax \ cosby \ coscz$ is an eigen function of ∇^2 and obtain its eigen value. (6+4)
- 24. a. Derive the expressions for wave function and energy for a particle in a rectangular box.
 - b. Obtain the value of $P_{1,0}$ () and $P_{2,1}$ ().

(5+5)

- 25. Write down the Hamiltonian and Schrödinger wave equation for hydrogen like atoms. Obtain the value of radial function for (i) $R_{2,0}$ (r) and ii) $R_{2,1}$ (r).
- 26. a. Show that the following wave function for 2s orbital is normalized:

$$\psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{z}{a_0}\right)^{\frac{3}{2}} \left(2 - \frac{Zr}{a_0}\right) e^{-\frac{2Zr}{a_0}}.$$

b. Using HMO theory obtain the resonance energy for allyl cation.

(5+5)

- 27. a. Construct the C_{2v} character table using Great orthogonality theorem and prove that any two irreducible representations are orthogonal.
 - b. Offer an explanation for the Mulliken symbols A' and E_u.

(7+3)

- 28. a. Show that the energy integral $H_{ab} = SE + S(e^2/r_{AB}) + K$.
 - b. Determine using direct product representation whether ethylene. The D_{2h} character table is provided for reference.
- * transition is allowed in (4+6)

D_{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$		
Aa	1	1	1	1	1	1	1	1		x^2, y^2, z^2
$egin{array}{c} A_g \ B_{1g} \ B_{2g} \end{array}$	1	1	-1	— 1	1	1	-1	-1	R_z	xy
B_{2n}	1	-1	1	1	1	-1	1	-1	R_y	xz
B_{3g}^{2g}	1	-1	-1	1	1	-1	-1	1	R_x	yz
A_u	1	1	1	1	-1	-1	-1	-1	-	
B_{1u}	1	1	-1	-1	-1	-1	1	1	z	
B_{2u}	1	-1	1	—1	— 1	1	-1	1	v	
B_{3u}	1	-1	1	1	-1	1	1	1	x	

~~~~~~