LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034 ### M.Sc. DEGREE EXAMINATION - CHEMISTRY #### FIRST SEMESTER - NOVEMBER 2019 ## PCH 1503/17/18PCH1MC03 - QUANTUM CHEMISTRY AND GROUP THEORY | Date: 05-11-2019 | Dept. No. | Max. : 100 Marks | |------------------|-----------|------------------| | | | | Time: 01:00-04:00 #### Part-A ## Answer ALL questions $(10 \times 2 = 20)$ - 1. Convert the point (-3,6,8) in cartesian coordinate to cylindrical coordinate. - 2. Which of the following is an acceptable wave function? e^{-x^2} or e^{-x} . - 3. Calculate the kinetic energy of the photoelectron emitted with energy 3.10 eV. (Given that = 2.13 eV). - 4. Find out the value of $H_3(y)$ and their corresponding normalization factor of a harmonic oscillator. - 5. Mention the significance of Slaters determinant. - 6. Obtain the ground state term symbol for Nitrogen atom. - 7. What is coulomb integral? Mention the operator involved. - 8. Prove that the four C_2 axes in the D_{2h} point group constitute two different classes. - 9. Show that the p_z orbital belongs to totally symmetric representation in C_{2v} character table. - 10. Identify the equivalent of the following combined operations: $C_2(z)$ and $_v(xz)$. ### Part-B ### Answer any EIGHT questions. $(8 \times 5 = 40)$ - 11. Find out whether the operator d/dr is Hermitian for the following eigen functions of a spherically symmetric systems (i) $\psi_1 = e^{-r}$ (ii) $\psi_{12} = e^{-2r}$. - 12. Discuss the postulates of quantum mechanics. - 13. Write down the Schrödinger wave equation for simple harmonic oscillator and obtain their Hermite polynomial equation. - 14. The first line in the rotation spectrum of CO has a frequency of 3.8424 cm⁻¹. Calculate the rotational constant and C-O bond length. - 15. Apply variation theorem to the probability of finding the particle in one dimensional box of length 'l' using the trial wave function, = Nx (L x). - 16. Obtain the value of the commutator $[x, p_x]$ and mention its significance. - 17a. Calculate the zero-point energy of HI molecule. Given the force constant = 314.14 N m⁻¹. - b. Write down the Hamiltonian for helium atom. (3+2) - 18. How many irreducible representations are possible for PF₅ molecule? Mention their dimensions. - 19. Generate the reducible representation of NH_3 molecule for its vibrational modes using the C_{3v} character table. | | E | 2C ₃ (z) | $3\sigma_{\rm v}$ | rotations | quadratic | | | | |----------------|---|---------------------|-------------------|---|---|--|--|--| | A ₁ | 1 | 1 | 1 | z | x ² +y ² , z ² | | | | | A ₂ | 1 | 1 | -1 | Rz | | | | | | E | 2 | -1 | 0 | (x, y) (R _x , R _y) | $(x^2-y^2, xy) (xz, yz)$ | | | | - 20. C_{3v} and C_{3h} point groups nave the same order out yet their classes are different. Justify. - 21. Solve the Secular determinant for 1,3-butadiene to obtain MO energies. - 22. Obtain the Slater determinants for the excited state of Helium atom. ### Part-C ## Answer any FOUR questions. $(4 \times 10 = 40)$ - 23. a. Derive the time-independent Schrodinger wave equation. - b. Show that the function $F = cosax \ cosby \ coscz$ is an eigen function of ∇^2 and obtain its eigen value. (6+4) - 24. a. Derive the expressions for wave function and energy for a particle in a rectangular box. - b. Obtain the value of $P_{1,0}$ () and $P_{2,1}$ (). (5+5) - 25. Write down the Hamiltonian and Schrödinger wave equation for hydrogen like atoms. Obtain the value of radial function for (i) $R_{2,0}$ (r) and ii) $R_{2,1}$ (r). - 26. a. Show that the following wave function for 2s orbital is normalized: $$\psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{z}{a_0}\right)^{\frac{3}{2}} \left(2 - \frac{Zr}{a_0}\right) e^{-\frac{2Zr}{a_0}}.$$ b. Using HMO theory obtain the resonance energy for allyl cation. (5+5) - 27. a. Construct the C_{2v} character table using Great orthogonality theorem and prove that any two irreducible representations are orthogonal. - b. Offer an explanation for the Mulliken symbols A' and E_u. (7+3) - 28. a. Show that the energy integral $H_{ab} = SE + S(e^2/r_{AB}) + K$. - b. Determine using direct product representation whether ethylene. The D_{2h} character table is provided for reference. - * transition is allowed in (4+6) | D_{2h} | E | $C_2(z)$ | $C_2(y)$ | $C_2(x)$ | i | $\sigma(xy)$ | $\sigma(xz)$ | $\sigma(yz)$ | | | |--|---|----------|----------|----------|-----|--------------|--------------|--------------|-------|-----------------| | Aa | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | x^2, y^2, z^2 | | $egin{array}{c} A_g \ B_{1g} \ B_{2g} \end{array}$ | 1 | 1 | -1 | — 1 | 1 | 1 | -1 | -1 | R_z | xy | | B_{2n} | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | R_y | xz | | B_{3g}^{2g} | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | R_x | yz | | A_u | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | - | | | B_{1u} | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | z | | | B_{2u} | 1 | -1 | 1 | —1 | — 1 | 1 | -1 | 1 | v | | | B_{3u} | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | x | | ~~~~~~