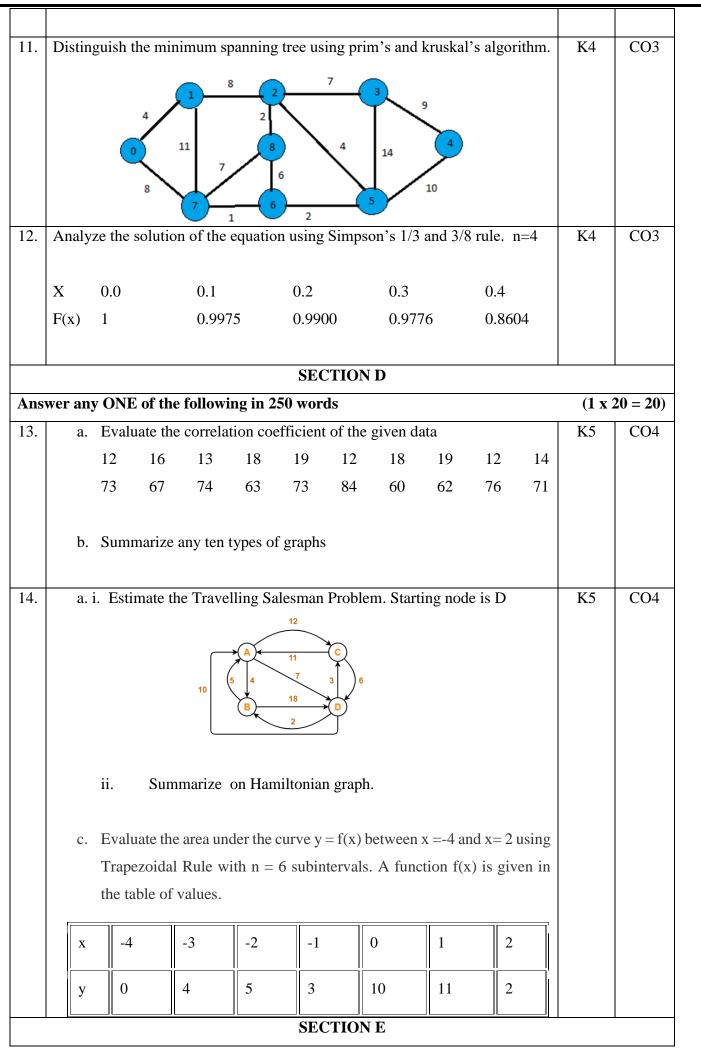
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

$\textbf{B.Sc.} \ \mathsf{DEGREE} \ \mathsf{EXAMINATION} - \textbf{COMPUTER} \ \textbf{SCIENCE}$

FIRST SEMESTER - **NOVEMBER 2022**


UCA 1301 - MATHEMATICS FOR COMPUTER SCIENCE

Date: 01-12-2022	Dept. No.	Max.: 100 Marks
Time: 01:00 PM - 04:00 PM		

	SECTION A				
Ans	Answer ALL the Questions				
1.	Answer True or False	(5	$(5 \times 1 = 5)$		
a)	The product of two matrices A and B is defined if the number of columns of A is equal to the number of rows of B.	K1	CO1		
b)	The median is the middle point in a dataset.	K1	CO1		
c)	Any connected graph is called as Euler graph iff all its vertices are of odd	K1	CO1		
	degree.				
d)	If there are n nodes then there would be n -1edges.	K1	CO1		
e)	Simpson's 1/3 rule is an extension of Trapezoidal rule	K1	CO1		
2.	Fill in the blanks	$(5 \times 1 = 5)$			
a)	A square matrix is said to be if $A e^A = A A e^B = I$	K1	CO1		
b)	Statistics is the art of	K1	CO1		
c)	A graph in which there are no edges between any of its vertices is graph.	K1	CO1		
d)	is a collection of disjoint trees.	K1	CO1		
e)	For the given equation $f(x) = x^3 - x - 1$, the root lies between	K1	CO1		
3.	Choose the best answer	$(5 \times 1 = 5)$			
a)	A square matrix is said to be orthogonal if	K2	CO1		
	a. $A^{T}A = AA^{T} = I$ b. $A^{\Theta}A = AA^{\Theta} = I$ c. $A^{\Theta}A = AA^{\Theta}A$				
b)	Statistics is a scientific discipline concerned with of data.	K2	CO1		
	a. collection b. analysis c. interpretation d. all				
c)	A graph G=(V,E) is said to be if there are multiple edges between	K2	CO1		
	a pair of vertices in the graph.				
	a. Connected graph b. Multi graph c. Trivial graph d. Infinite graph				
d)	The number of edges on the longest path between node and a leaf node	K2	CO1		
	represents of a node.				
	a. Path b. level c. Height d. None				
e)	The method used to find the root of the equation is	K2	CO1		
	a. Regula-Falsi b. Trapezoidal c. Simpson's rule d. Interpolation				

4.	Answer the following		$(5 \times 1 = 5)$	
a)	Express the condition for a square matrix to be identity matrix. Give example.	K2	CO1	
b)	Interpret Mode.	K2	CO1	
c)	Give an example for an Eulerian graph.	K2	CO1	
d)	Indicate Cayley's formula.	K2	CO1	
e)	Predict the use of Interpolation.	K2	CO1	

e)	Predict the use of Interpolation.	K2	CO
Ans	SECTION B swer any TWO of the following in 100 words	(2, x 1	10 = 20)
5.	Calculate the Eigen values and Eigen vectors of the given matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	K3	CO2
6.	Illustrate the operations on Graph.	К3	CO2
7.	Construct the spanning and minimum spanning tree of the following figure 10 20 6 10 30 2 7 30 15 25 10	К3	CO2
8.	Calculate the root of the equation $2x^3$ -2x -5 using False position method.	К3	CO2
	SECTION C		1
Ans	swer any TWO of the following in 100 words	(2 x	10 = 20)
9.	Analyze A ⁻¹ using Caley Hamilton theorem for the given matrix	K4	CO3
10.	$A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$ Explain the sample standard deviation of the following data	K4	CO3
10.	51, 38, 79, 46, 57	13.7	

	y ONE of the	following in	250 words			(1 x 2	20 = 20
5. a.	Hypothesize method.	e that the equa	ations are cons	stent. Solve the	em using rank	K6	CO5
	X + Y + Z = 9						
	2X + 5Y + 7Z = 52 2X - Y - Z = 5						
	Integrate the	e methods of	storing a graph	with example			
ā. a.	Formulate tl	ne fundament	tal circuit and c	utset.		K6	CO5
	b. Write the solution using Newton's interpolation. Find $x = 1925$						
b	Write the so	lution using l	Newton's inter	polation. Find x	. = 1923		
X	Write the so	olution using 1	Newton's inter	polation. Find x	1931		
