

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER - APRIL 2016

MT 1503 - ANALYTICAL GEOMETRY OF 2D, TRIG. & MATRICES

Date: 03-05-2016	Dept. No.	Max.: 100 Marks
	L	

Time: 01:00-04:00

PART - A $(10 \times 2 = 20)$

Answer ALL questions

- 1. Write the expansion for $\sin n\theta$.
- 2. If $x = \cos \theta + i \sin \theta$ find $x^n + \frac{1}{x^n}$.
- 3. Show that $\cosh 2x = \frac{1 + \tanh^2 x}{1 \tanh^2 x}$
- 4. Find the value of Log(1+i).
- 5. Define a Hermitian matrix with one example.
- 6. Find the eigen values of $\begin{bmatrix} a & h & g \\ 0 & b & 0 \end{bmatrix}$.
- 7. What is the condition that the lines lx + my + n = 0 and $l_1x + m_1y + n_1 = 0$ are conjugate with respect to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 8. Define the conjugate diameters of the ellipse.
- 9. Write the standard form of the equation to the hyperbola and its asymptotes.
- 10. Write the polar equation to the conic and its directrix.

(5x8 = 40)PART - B

Answer any FIVE questions

- 11. Expand $\sin^8 \theta$ in terms of cosines of multiples of θ .
- 12. Evaluate $\lim_{x \to 0} \frac{\sin 2x 2\sin x}{x^3}.$
- 13. Separate into real and imaginary parts $tan^{-1}(x+iy)$.
- 14. If $\sin(\theta + i\phi) = \tan(x + iy)$, Show that $\frac{\tan \theta}{\tanh \phi} = \frac{\sin 2x}{\sinh 2y}$.
- 15. Find the characteristic roots of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & 4 & 2 \end{bmatrix}$.
- 16. Find the locus of the poles of chords of a parabola subtending a right angle at the vertex.
- 17. Prove that in an ellipse, the tangents at the extremities of a diameter are parallel to the chords bisected by the diameter.
- 18. Find the asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$

Answer Any TWO Questions

- 19. a. Determine a, b, c such that $\lim_{\theta \to 0} \frac{\theta(a+b\cos\theta) c\sin\theta}{\theta^5} = 1.$
 - b. Expand $\sin^3 \theta \cos^4 \theta$ in terms of sines of multiples of θ . (8 + 12)
- 20. a. If $tan(\alpha + i\beta) = x + iy$ prove that $x^2 + y^2 + 2x \cot 2\alpha = 1$.
 - b. If $\log \sin(\theta + i\phi) = A + iB$, Show that

(i)
$$2e^{2A} = \cosh 2\phi - \cos 2\theta$$
 (ii) $\tanh \phi = \tan \theta \cot B$. (8 + 12)

- 21. Diagonalize the matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$.
- 22. a. A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose centre is C meets the circle.

 $x^2 + y^2 = a^2 + b^2$ at Q and Q'. Prove that CQ and CQ' are conjugate diameters of the ellipse.

b. Trace curve
$$\frac{12}{r} = 4 + \sqrt{3}\cos\theta + 3\sin\theta$$
. (10 + 10)

\$\$\$\$\$\$\$