

 y^2 , xy = z.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2016

MT 1818 - DIFFERENTIAL GEOMETRY

Date: 05-05-2016 Dept. No. M Time: 01:00-04:00	ax. : 100 Marks
Answer ALL the Questions:	
1. a) Find the equation of the osculating plane at any point on the circular helix	K. (5)
OR	
b) For the curve $\vec{x} = (u, u^2, u^3)$, find the curvature and torsion.	(5)
c) State and prove Serret-Frenet formula and express them in terms of Darbo	oux vector. (15)
OR	723 - 129
d) (i) Show that the necessary and sufficient condition for a curve to be plan	e curve is $[\bar{x}', \bar{x}'', \bar{x}'''] = 0$.
(ii) Prove that the equation of the osculating plane at the point $P(x, y, z)$ of	In the curve of intersection of
the cylinders $x^2 + y^2 = a^2$ and $y^2 + z^2 = b^2$ is $\frac{Xx^3 - Zz^3 - a^4}{a^2} = \frac{Yy - Zz^3 - b^4}{b^2}$.	
2. a) For a curve of constant slope, prove that the necessary and sufficient con	ndition is that the ratio of
curvature to torsion is constant.	(5)
OR	
b) Prove that if the circle $lx + my + mz = 0$, $x^2 + y^2 + z^2 = 2cz$ has three point	contact with the paraboloid
$ax^2 + by^2 = 2z$ then $c = \frac{l^2 + m^2}{bl^2 + am^2}$.	(5)
c) Derive the equation of evolute and involute of a curve.	(15)
OR	
d) Find the equations of the curve whose curvature and torsion are constant	ts. (15)
3. a) Derive rectifying developable associated with a space curve.	(5)
OR	
b) Prove that the first fundamental form of a surface is a positive definite.	(5)
c) Prove that the necessary and sufficient condition for the surface may be	developable is that its Gaussian
curvature vanish.	(15)
OR	
d) Define envelope of a curve. Find the equation of the envelope of the fam	
$3a^2x - 3ay + z = a^3$ and show that its edge of regression is the curve of i	intersection of the surfaces $xz =$

(15)

