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Answer ALL the Questions:

1. a) Find the equation of the osculating plane at any point on the circular helix. 5
OR
b) For the curve ¥ = (u, u*, u*). find the curvature and torsion. Q)
c) State and prove Serret-Frenet formula and express them in terms of Darboux vector. (15)
OR

d) (i) Show that the necessary and sufficient condition for a curve to be plane curve is [x', ", x"""] = 0.

(i) Prove that the equation of the osculating plane at the point P{x, y. =) on the curve of intersection of

Xa¥—Fgiegt  ypy—zei-pt

the cylinders x* + y* = ¢* and y* + 2* = b* is o 7

(7+8)

2. a) For a curve of constant slope, prove that the necessary and sufficient condition is that the ratio of

curvature to torsion is constant. Q)
OR
b) Prove that if the circle /x + myp + nz =0, x> + * + z> = 2¢z has three point contact with the paraboloid
) ) - Pam?
ax"+by =2zthenc = PrTpE—L 5)
c¢) Derive the equation of evolute and involute of a curve. 1s)
OR
d) Find the equations of the curve whose curvature and torsion are constants. {as)
3. a) Derive rectifying developable associated with a space curve. Q)]
OR
b) Prove that the first fundamental form of a surface is a positive definite. )

¢) Prove that the necessary and sufficient condition for the surface may be developable is that its Gaussian
curvature vanish. 15)
OR
d) Define envelope of a curve. Find the equation of the envelope of the family of planes

3a’*x — 3ay +z = a’ and show that its edge of regression is the curve of intersection of the surfaces xz =

Vixy =z (15)




4. a) State and prove Meusnier theorem. 5
OR
b) Find the Gaussian curvature at the point (u, v) of the anchor ring x = (b + acosu)cosv,

y = (b + a cosu)sinv, z = asinu. 5)

3
¢) (i) Prove that the curves of the family :1_*‘ = a constant are geodesic on a surface with metric vdu® —

2uvdudy + 2u*dv* (u >0, v>0).

(i1) Prove that the curves u + v = constant are geodesic on a surface with metric

(1 + u?)du® — 2uvdudv + (1 + u? \)dvz. @8+7)
OR
d) Define Dupin Indicatrix. Derive the equation of Dupin Indicatrix. (15)
5. a) Derive Weingarten’s equation. Q)
OR
b) Prove that the Gaussian curvature of a surface is a bending invariant. 5
c) Derive the partial differential equation of surface theory. (15)
OR

d) State and prove the fundamental theorem of surface theory and illustrate with an example.

15)
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