LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

THIRD SEMESTER - APRIL 2016

MT 3103 - MATHEMATICS FOR CHEMISTRY

Date: 06-05-2016 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

Section A

Answer ALL questions:

 $10\times 2=20$

- 1. Find the n^{th} derivative of log(ax + b).
- 2. At which point of the curve $y = x^3 12x + 18$, is the tangent parallel to the x —axis.
- 3. Prove that $\frac{e-1}{e+1} = \frac{\frac{1}{2} \cdot \frac{1}{4!} \cdot \frac{1}{4!} \cdot \frac{1}{6!} + \cdots = e}{\frac{1}{1!} \cdot \frac{1}{3!} \cdot \frac{1}{5!} + \frac{1}{2!} \cdot \cdots = e}$
- 4. Define a skew-symmetric matrix and give an example.
- 5. Find the Laplace transform of $(t^2 + 2t + 3)$.
- 6. Find $L^{-1}\left(\frac{1}{(s-5)^{\frac{1}{2}}}\right)$.
- 7. Write down the expansion of $\sin \theta$ and $\cos \theta$ in a series of ascending powers of θ .
- 8. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 9. What is the chance that a leap year selected at random will contain 53 Sundays?
- 10. Determine the binomial distribution for which the mean is 4 and variance is 3.

Section B

Answer any FIVE questions:

 $5\times8=40$

- 11. Find the n^{th} differential coefficient of cosx.cos2x.cos3x.
- 12. Find the angle of intersection for the curve $x^2 = 4y$ and $y^2 = 4x$.
- 13. Find the sum to infinity of the series $1 + \frac{2^3}{2!} + \frac{3^3}{3!} + \cdots$ co.
- 14. Find the characteristic equation of the matrix $\mathbf{A} = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$ and verify that it is satisfied by A.
- 15. Find the Laplace transform of $f(t) = \begin{cases} e^{-t} & 0 < t < 4 \\ 0 & t > 4 \end{cases}$
- 16. Express cos80 in terms of sin 0.
- 17. If $\cos(x + iy) = \cos\theta + i\sin\theta$, prove that $\cos 2x + \cosh 2y = 2$.
- 18. Calculate the mean and standard deviation for the following table giving the age distribution of 542 members:

Age(in years)	20 - 30	30 – 40	40 – 50	50 – 60	60 - 70	70 – 80	80 – 90
No. of members	3	61	132	153	140	51	2

Section C

Answer any TWO questions:

 $2 \times 20 = 40$

- 19. a) Find the maxima and minima of the function $x^3y^2(6-x-y)$.
 - b) Find the sum to infinity of the series $\frac{2\cdot4}{3\cdot6} + \frac{2\cdot4\cdot6}{3\cdot6\cdot9} + \frac{2\cdot4\cdot6\cdot8}{3\cdot6\cdot9\cdot12} + \cdots$ 00. (12 + 8)
- 20. a) Find all the eigen values and the associated eigen vectors of the matrix

$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}.$$

- b) Expand $sin^{\frac{1}{2}}\theta cos^{\frac{1}{2}}\theta$ in a series of cosines of multiples of θ . (12 + 8)
- 21. a) Find $L^{-1}\left(\frac{1}{(s+1)(s^2+2s+2)}\right)$. b) Solve the equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = sint$ given that $y = \frac{dy}{dt} = 0$ when t = 0. (10+10)
- 22. a) Separate into real and imaginary parts of $tan^{-1}(x + iy)$.
 - b) A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which
 - (i) neither car is used, and (ii) the proportion of days on which some demand is refused.

(10 + 10)
