LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2016

MT 3810 - TOPOLOGY

Date: 25-04-2016 Time: 09:00-12:00	Dept. No.	Max. : 100 Marks	
Answer all questions. Eac	ch question carries 20 mark	ks.	
I a)1) Let X be a complete	metric space and let Y be a s	subspace of X. Prove that Y is closed when	Y is
complete.			
	OF	R	
a)2) Let X and Y be metric	spaces and f a mapping of	X into Y . Prove that f is continuous at x_0 if	
$x_n \to x_o \Rightarrow f(x_n) \to f$	$f(x_o)$	1	(5)
b)1) If a convergent sequen	nce in a metric space has infi	initely many distinct points then prove that i	its limit
point is a limit point o	of the set of points of the sequ	uence.	
b)2) State and prove Canton	r's intersection theorem.	((9+6)
	OI	R	
c)1) If $\{A_n\}$ is a sequence of	of nowhere dense sets in a co	omplete metric space X, then prove that the	re exists a
point in X which is not	t in any of the A _n 's.		
c)2) Let X be a metric space	e, let Y be a complete metric	c space and let A be a dense subspace of X.	Iffis
uniformly continuous r	mapping of A into Y then pro	ove that f can be extended uniquely to a uni	iformly
continuous mapping g	of X into Y.	((6+9)
II a)1) Prove that every sep	parable metric space is second	d countable.	
	OF	R	
a)2) State and prove Line	delof's theorem.	((5)
b)1) Prove that any close	ed subspace of a compact spa	ace is compact.	
b)2) State and prove Hei	ne-Borel theorem.		(6+9)
	OF	R	
c)1) Prove that any conti	inuous image of a compact sp	pace is compact.	

c)2) Prove that a topological space is compact if every class of subbasic closed sets with the finite

(5+10)

intersection property has non-empty intersection.

III a)	1) Prove that the product of any non-empty class of Hausdorff spaces is a Hausdorff space.	
	OR	
a)2) Prove that every compact Hausdorff space is normal.		(5)
b)	Let X be a normal space and let A and B be disjoint closed subspaces of X. If [a,b] is any c	closed
	interval on the real line, then prove that there exists a continuous real function f defined or	X, all of
	whose values lie in [a,b] such that $f(A) = a$ and $f(B) = b$.	(15)
	OR	
c)1) Prove that a one-to-one continuous mapping of a compact space into a Haudorff space is a	
	homeomorphism.	
c)2) State and prove Tietze Extension theorem.		
IV) a)1) Prove: A topological space X is disconnected \Leftrightarrow there exists a continuous mapping of X or	nto the
	discrete two points space $\{0,1\}$.	
	OR	
a)2	2) Prove that a subspace of the real line R is connected if it is an interval.	(5)
b)	Prove that the product of any non-empty class of connected spaces is connected and as its	
	application, show that all finite-dimensional Euclidean and unitary spaces are connected.	(15)
	OR	
c)	If X is an arbitrary topological space, then prove the following:	
	(i) Each point in X is contained in exactly one component of X	
	(ii) Each connected subspace of X is contained in a component of X	
	(iii) A connected subspace of X which is both open and closed is a component of X and	
	(iv) Each component of X is closed.	(15)
V)a)1) Quoting the lemmas required, state Stone-Weierstrass theorem.	
	OR	
a)2) Prove that X_{∞} is Hausdorff.		(5)
b)	State and prove Weierstrass approximation theorem. OR	
۵۱		for (V D)
c)	Proving the two required lemmas, state and prove the Extended Stone-Weierstrass theorem	
		(15)
