LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER - APRIL 2016

MT 4502/MT 4500 - MODERN ALGEBRA

Date: 20-04-2016	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00	L	1

PART-A

ANSWER ALL THE QUESTIONS:

(10x2=20marks)

- 1. Define partially ordered set.
- 2. Prove that $(ab)^2 = a^2b^2$ for all a, b in a group G if and only if G is abelian.
- 3. Define cyclic group and give an example.
- 4. Show that every subgroup of an abelian group is normal.
- 5. Define Homomorphism and give an example.
- 6. Express (1,3,5) (5,4,3,2) (5,6,7,8) as a product of disjoint cycles.
- 7. Define Ring.
- 8. If F is a field show that its only ideals are {0} and F itself.
- 9. Prove that every field is a principal ideal domain.
- 10. Find all the units in Z[i].

PART-B

ANSWER ANY FIVE QUESTIONS:

(5x8=40marks)

- 11. Show that the union of two subgroups of G is a subgroup of G if and only if one is contained in the other.
- 12. State and prove Lagrange's theorem.
- 13. If G is a group and N is a normal subgroup of G then prove that G/N is also a group under the product of subsets of G.
- 14. State and prove Cayley's theorem.
- 15. Prove that every finite integral domain is a field.
- 16. If R is a commutative ring with unit element whose only ideals are (0) and R itself then prove that R is a field.
- 17. Show that every Euclidean ring is a principal ideal domain.
- 18. Find a greatest common divisor of a = 14 + 3i and b = 4 + 7i, and represent it in the form $\lambda a + \mu b$ in Z(i)

PART-C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40 \text{ marks})$

- 19. a) Show that a nonempty subset H of group G is a subgroup of G if and only if $a,b \in H$ implies that $ab^{-1} \in H$.
 - b) If H and K are finite subgroups of a group G then prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.
- 20. a) Prove that every subgroup of a cyclic group is cyclic.
 - b) State and prove fundamental homomorphism theorem of groups.
- 21. a) Let H and N be subgroups of a group G and suppose that N is normal in G . Then prove that $HN/N \simeq H/H \cap N$.
 - b) Let f be a homomorphism of a ring R onto R' with kernel K. Then prove that $R / K \simeq R'$.
- 22. a) If R is a commutative ring with unity and P an ideal of R. Then prove that P is a prime ideal of R if and only if R/P is an integral domain.
 - b) Show that an ideal of the Euclidean ring R is a maximal ideal if and only if it is generated by a prime element of R.

\$\$\$\$\$\$\$