LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2016

MT 4802 - GRAPH THEORY

Date: 18-04-2016	Dept. No.	Max. : 100 Mark	s
Time: 09:00-12:00			

Answer all the questions. Each question carries 25 marks.

1.(a) Obtain a characterization for bipartite graphs.

(8)

OR

- (b) (i) Prove that an edge of a graph G is a cut edge if and only if it is contained in no cycle of G.
 - (ii) Prove that in a tree the number of edges is one less than the number of vertices.

(4 + 4)

(c) (i) Let $d = (d_1, d_2, \dots, d_n)$ be a nonincreasing sequence of nonnegative integers, and denote the sequence $(d_2 - 1, d_3 - 1 \dots d_{d_l+1} - 1, d_{d_l+2} \dots d_n)$ by d'. Show that d is graphic if and only if d' is graphic.

(ii) Prove that
$$\tau(K_n) = n^{n-2}$$
.

(8 + 9)

OR

(d) Determine the shortest paths between u_0 and all other vertices of the following graph.

(17)

2. (a) Prove that a graph G with $v \ge 3$ is 2-connected if and only if any two vertices of G are connected by at least two internally-disjoint paths. **(8)**

OR

(b) Obtain Chavatal's sufficient condition for Hamiltonian graphs.

(8)

- (c) (i) Show that every k-regular graph on (2k + 1) vertices is Hamiltionian.
 - (ii) Prove that a nonempty connected graph is eulerian if and only if it has no vertices of odd degree.

(8 + 9)

OR

(d) Describe the Chinese Postman problem. State Fleury's algorithm for Eulerian graphs.

(17)

3. (a) (i) Prove with usual notation, that $\alpha' + \beta' = \nu$.	(8)
OR	
(b) Define a maximum matching and minimum covering in a graph G. Also show that in a maximum matching is equal to the number vertices in a minimum covering	
(c) Describe the optimal assignment problem and state Kuhn – Munkres algorithm matching in the weighted complete bipartite graph given by the following matrix.	n. Obtain an optimal
$ \begin{pmatrix} 3 & 5 & 5 & 4 & 1 \\ 2 & 2 & 0 & 2 & 2 \\ 4 & 4 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 3 & 3 \end{pmatrix} $	
OR	(17)
(d) State and prove the necessary and sufficient condition for a graph to have a perfect	matching. (17)
 4. (a) (i) Prove that δ ≥ k − 1 for a k-critical graph G. (ii) Show that in a critical graph, no vertex cut is a clique. 	(4 + 4)
OR	
(b) State and prove five color theorem.	(8)
(c) State and prove Kuratowski's theorem.	(17)
OR	
(d) (i) State and prove Brook's theorem (ii) Prove that if G is a tree, then $\pi_k(G) = k(k-1)^{\nu-1}$.	(10 + 7)
