LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - APRIL 2016

MT 5409 - NUMERICAL METHODS

Date: 29-04-2016 Time: 01:00-04:00 Dept. No.

Part A

Answer ALL questions:

 $(10 \times 2 = 20)$

Max.: 100 Marks

- 1. Explain Cramer's rule.
- 2. Establish the Newton-Raphson for \overline{N} , where N is a positive integer.
- 3. What do you mean by transcendental equation?
- 4. Write Newton forward interpolation formula..
- 5. Write any two properties of divided differences.
- 6. Write Stirling's formula using central difference notation.
- 7. Write the derivatives using Newton's forward difference formula.
- 8. Define numerical integration.
- 9. Write Simpson's 1/3rd and 3/8th rule.
- 10. Write the modified Euler's formula.

Part B

Answer any FIVE questions:

 $(5 \times 8 = 40)$

11. Solve the following by Gauss elimination method.

$$28x + 4y - z = 3$$
, $x + 3y + 10z = 24$ and $2x + 17y + 4z = 35$.

- 12. Find the real root of $x^3 9x + 1 = 0$ correct to three significant figures using Regula -falsi method.
- 13. Using Gauss forward formula find f(25) given

x	20	24	28	32
f(x)	14	32	35	40

- 14. Find a cubic polynomial which takes the following set of values (0,1), (1,2), (2,1) and (3,10).
- 15. Derive Laplace Everett's formula.
- 16. Using the following data determing f'(5) by Newton's divided difference formula.

X	0	2	3	4	7	9
f(x)	4	26	58	112	466	922

- 17. Apply Simpson's rule to evaluate $\int_{0}^{2} \frac{dx}{(1+x^3)}$ to two decimal places by dividing the range into 4 equal parts.
- 18. Solve $\frac{dy}{dx} = 1 y$ with the initial condition x = 0, y = 0 using Euler's modified formula.

Part C

Answer any TWO questions:

 $(2 \times 20 = 40)$

19. a) Solve by Gauss Seidel method: 27x + 6y - z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110.

b) Find by Newton's method the root of the equation $e^x = 4x$, which is approximately 2, correct to three places of decimals.

(10+10)

20. a) Derive the Newton's backward difference interpolation formula.

b) By means of Lagrange's formula, prove that
$$y_1 = y_3 - 0.3(y_5 - y_{-3}) + 0.2(y_3 - y_{-5})$$
.

(10+10)

21. a) Use Stirling's formula to find f(1.63) given

X	1.5	1.6	1.7	1.8	1.9
f(x)	17.609	20.045	23.045	25.527	27.875

b) Using Bessel's formula, calculate y₅ given

X	0	4	8	12
Y	143	158	177	199

(10+10)

- 22. a) Apply the fourth order Runge-Kutta method, to find an approximate value of y when x = 0.2 given that y' = x + y, y(0) = 1.
 - b) Evaluate $\int_{0}^{10} \frac{ds}{1+x^2}$ by using Trapezoidal and Simpson's 3/8.

(10+10)

^^^^^