LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER - APRIL 2016

MT 5501 - REAL ANALYSIS

Date: 26-04-2016	Dept. No.	Max. : 100 Marks

Time: 09:00-12:00

PART - A

ANSWER ALL THE QUESTIONS

 $(10 \times 2 = 20)$

- 1. Define order complete.
- 2. Write the triangle inequality.
- 3. Define discrete metric space.
- 4. Define interior point.
- 5. Give an example of a continuous function which is not uniformly continuous.
- 6. Define Cauchy sequence.
- 7. Show that a function differential at c is also continuous at c.
- 8. Define local maximum.
- 9. Define limit superior of a real sequence.
- 10. State linearity property of Riemann Stieltjes integral-

PART - B

ANSWER ANY FIVE QUESTIONS

 $(5 \times 8 = 40)$

- 11. State and prove Minkowski's inequality.
- 12. If n is any positive integer, then prove that N^n is countably infinite.
- 13. Let (X, d) be a metric space. Then prove that
 - (i) the union of an arbitrary collection of open sets in X is open in X.
 - (ii) the intersection of an arbitrary collection of closed sets in X is closed in X.
- 14. Prove that the continuous image of a compact metric space is compact.
- 15. Let $f:(X,d_1) \to (Y,d_2)$ be uniformly continuous on X. If $\{x_n\}$ is a Cauchy sequence in X. Prove that $\{f(x_n)\}$ is a Cauchy sequence in Y.
- 16. State and prove Rolle's theorem .
- 17. Let $\{a_n\}$ be a real sequence. Then prove that
 - (i) $\{a_n\}$ converges to l if and only if $\lim \inf a_n = \lim \sup a_n = l$.
 - (ii) $\{a_n\}$ diverges to ∞ if and only if $\liminf a_n = +\infty$
- 18. State and prove the formula for Integration by parts.

ANSWER ANY TWO QUESTIONS

 $(2x\ 20 = 40)$

- 19. (a) Prove that the set **R** is uncountable.
 - (b) State and prove Cauchy- Schwarz Inequality.
- 20. (a) Prove that the Euclidean space \Re^k is complete.
 - (b) Every compact subset of a metric space is complete.
- 21. State and prove Bolzano Weierstrass theorem and deduce Intermediate value theorem.
- 22. (a) State and prove Taylor's theorem.
 - (b) Suppose (i) $f \in R(\alpha)$ on [a,b], (ii) α is differentiable on [a,b] and (iii) α^1 is continuous on [a, b]. Prove that the Riemann integral $\int_a^b f\alpha' dx$ exists and $\int_a^b fd\alpha = \int_a^b f\alpha' dx$.

\$\$\$\$\$\$\$