LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - MATHEMATICS SIXTH SEMESTER - APRIL 2016 MT 6607 - DYNAMICS

Date: 10-04-2010 Dept. No. Max. : 100 Marks	Date: 18-04-2016	Dept. No.		Max. : 100 Marks
---	------------------	-----------	--	------------------

Time: 09:00-12:00

PART-A

Answer ALL questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Define dynamics.
- 2. A body of mass m is carried by a lift moving with upward acceleration, find the pressure on the lift.
- 3. Define projectile.
- 4. A body is projected with a velocity of 98 metres per sec. in a direction making an angle sin⁻¹ (3) with the horizon, show that it rises to a vertical height of 441 metres.
- 5. Define simple harmonic motion.
- 6. If the displacement of a moving point at any time given by the equation of the form $x = a \cos \omega t + b \sin \omega t$, show that the motion is simple harmonic.
- 7. Define central orbit.
- 8. Write down the pedal equations of the circle and the parabola.
- 9. Define moment of inertia of the particle about the straight line.
- 10. State perpendicular axes theorem.

PART-B

Answer any FIVE questions

 $(5 \times 8 = 40 \text{ marks})$

- 11. An engine of mass 120 tons is coupled to an pulls a carriage of mass 80 tons. The resistance to motion of engine is $\frac{1}{80}$ of its weight and that of carriage is $\frac{1}{100}$ of its weight. Find the tension in the coupling if whole tractive force exerted by engine weight of 12152 lbs.
- 12. Show that the velocity with which a particle must be projected down a smooth inclined plane of length l and height h so that the time of decent shall be the same as taken by another particle in falling freely through a distance equal to the height of the plane is $\frac{l^2 h^2}{l} \sqrt{\frac{g}{2h}}$.
- 13. Find the range of a projectile on an inclined plane.
- 14. Find the velocity and displacement of the particle executing simple harmonic motion.

- 15. A particle is oscillating in a straight line about a centre of force O towards which when the distance is x, the force is $m n^2 x$ and a is the amplitude of oscillation. When at a distance $\frac{a\sqrt{3}}{2}$ from O, the particle receives a blow in the direction of motion which generates a velocity na. If this velocity be away from O then show that the new amplitude is $a\sqrt{3}$.
- 16. Find the radial and transverse components of velocity and acceleration in polar coordinates.
- 17. Derive the differential equation of a central orbit.
- 18. Find the moment of inertia of an elliptic lamina.

PART-C

Answer any TWO questions:

 $(2 \times 20 = 40 \text{ marks})$

- 19. (a) An engine and train weigh 420 tons and engine exerts a force of 7 tons wt. If resistance of motion be 14 lbs.wt./ton,
 - (i) find the time the train will take to acquire a velocity of 30 m.p.h from rest.
 - (ii) If now steam is shut off, find the distance the train will run before coming to rest.
 - (iii) Find this distance, if the brakes are also applied assuming resistance due to brakes is 126 lbs.wt./ton.
- (b) A string passes over a fixed smooth pulley and to one end, there is attached a mass m_1 and to the other a smooth light pulley over which passes another string with masses m_2 and m_3 at the ends. If the system is released from rest, show that m_1 will not move if $\frac{4}{m_1} = \frac{1}{m_2} + \frac{1}{m_3}$. (12+8)
- 20. Show that the path of a projectile is a parabola. (20)
- 21. (a) Show that the composition of two simple harmonic motions of the same period along two perpendicular lines is an ellipse. (8+12)
 - (b) A point moves with uniform speed v along the cardioide $r = a(1 + cos\theta)$. Show that
 - (i) its angular velocity ω about pole is $\frac{v}{2a} \sec \frac{\theta}{2}$.
 - (ii) radial component of acceleration is constant and is equal to $\frac{3v^2}{4\pi}$.
 - (iii) magnitude of resultant acceleration is $\frac{3v\omega}{2}$.
- 22. (a) State and prove parallel axis theorem. (10+10)
 - (b) Find the moment of inertia of a hollow sphere about a diameter its internal and external radii being b and a.

\$\$\$\$\$\$\$