LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

01:00-04:00

Date: 28-04-2017

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER - APRIL 2017

Dept. No.

16PMT2ES02- NUMBER THEORY AND CRYPTOGRAPHY

Max.: 100 Marks

Answer ALL the questions:	
1. (a) Find the base -2 representation of the decimal numbers -17 and 61. (OR)	(5)
(b) Express the g.c.d of 666, 1414 as a linear combination of these integers. (c) (i) State and prove Lame's theorem.	(5)
(ii) Find the value of the Euler phi-function of the integers 720, 1001 and 20!.	(9+6)
(OR) (d) Find all the solutions to the system of linear congruences $x \equiv 1 \pmod{5}$, $x \equiv 4 \pmod{7}$ and $x \equiv 5 \pmod{11}$.	$d2), \ x \equiv 2 \pmod{3}, \ x \equiv (15)$
2. (a) Let $f(X) = X^4 + X^3 + X^2 + 1$, $g(X) = X^3 + 1$ in $F_2[X]$. Find g.c.d. (algorithm for polynomials and express the g.c.d. in the form $u(X)f(X) + v(X)$	-
(b) Define Legendre symbol and prove that $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$.	(5)
(c) (i) If g is a generator of F_q^* then prove that g^j is also a generator if and onl particular, prove that there are a total of $\varphi(q-1)$ different generators of F_q^* . (ii) Prove that for any $q=p^f$ the polynomial X^q-X factors in $F_p[X]$ intirreducible polynomials of degree d dividing f . (OR)	o the product of all monic)
(d) (i) For any two positive odd integers m and n , prove that $\left(\frac{m}{n}\right) = (-1)^{(m-1)}$ (ii) Using the algorithm find the square root of $a = 186$ modulo $p = 401$.	$(n-1)/4\left(\frac{n}{m}\right).$
3. (a) Using the Ceasar cipher, encipher the message ATTACK AT DAWN. (OR)	(5)
(b) Encipher the message PAYMENOW using the affine transformation $C \equiv 7P + 12 \pmod{26}$.	(5)
(c) A person is using 2x2 enciphering matrix with a 26 letter alphabet. "WKNCCHSSJH" and he knows that the first word is "GIVE". Find the I read the message. (15) (OR)	
(d) Suppose Bob wants to send an enciphered message to Alice by means of the message be "YES". Let Alice's public key be $(e_A, n_A) = (39423,46927)$. (i) Encipher the message that is to be sent from Bob to Alice.	
(ii) Let Alice's prime number be $p = 167$ and $q = 281$. Determine Alice's secuphertext obtained from Bob. (15)	
4. (a) Find all the bases for which 15 is a pseudoprime. (OR)	(5)
(b) Write a short note on Hash functions.	(5)

(c) Discuss about any two primality tests.	$(\bigcap P)$	(15)	
(OR) (d) Let n be a composite integer. (i) If n is divisible by a prefect square > 1 , then prove that n is not a Carmicheal number. (ii) If n is square free, then n is a Carmicheal number if and only if $p-1 n-1$ for every prime p dividing			
<i>n.</i> 5. (a) Find2 ¹²³⁴ <i>mod</i> 789.	(15)	(5)	
(b) Write a note on Fermat factorization method.	(OR)	(5)	
•	inad over 7. Then	(3)	
(c) Let E be the elliptic curve $y^2 = x^3 - 36x$ defined over Z_5 . Then (i) List the points on E.			
(ii) Compute $P+Q$ if $P=(-3, 9)$ and $Q=(-2, 8)$. (iii) Compute $2P$ if $P=(-2, 8)$		(15)	
(d) Write about elliptic curve discrete log problem	(OR)	(15)	
•		(13)	
\$\$\$\$\$\$\$			