LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER – APRIL 2017

16PMT2MC04- COMPLEX ANALYSIS

Date: 26-04-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

Answer all Questions. All questions carry equal marks.

1. a. Evaluate $\int_{V} \frac{\sin z}{z^3} dz$, $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.

OR

b. State and prove Fundamental theorem of Algebra.

(5)

c. State and prove Goursat's theorem.

OR

d. If γ_0 and γ_1 are two closed rectiable curves in G and $\gamma_0 \sim \gamma_1$, then prove that

 $\int_{\gamma_0} f =$

 $\int_{\gamma_1} f$, for every function f analytic on G.

(15)

a. If |a| < 1, $D = \{z: |z| < 1\}$, $\varphi_a(z) = \frac{z-a}{1-\bar{a}z}$, prove the following:

1. φ_a is one-one map of D onto D itself.

2. inverse of φ_a is φ_{-a} .

3. φ_a maps ∂D onto ∂D .

4. $\varphi_a(a) = 0$, $\varphi_a'(0) = 1 - |a|^2$, $\varphi_a'(a) = (1 - |a|^2)^{-1}$.

b. State and prove Schwarz lemma.

(5)

c. State and prove Hadamard's three circles theorem.

OR

d. State and prove the Riemann mapping theorem. (15) a. For $Rez_n > 1$, prove that the series $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely if and only if the series $\sum_{n=1}^{\infty} z_n$ converges absolutely. 3.

OR

b. State and prove Gauss's formula.

(5)

c. state and prove the weierstass factorization theorem.

d. Prove that for Rez > 1, $\tau(z)\gamma(z) = \int_0^\infty (e^t - 1)^{-1} t^{z-1} dt$.

(15)

a. Find the order of $exp(e^z)$ and $exp(z^n)$. 4.

OR

b. State and prove Mittag Leffler's theorem.

(5)

c. State and prove Hadamard's factorization theorem.

d. If f is an entire function of finite genus μ , then prove that f is of finite order $\lambda \leq \mu + 1$. (15)

a. Prove that the sum of residues of an elliptic function is zero. 5.

b. Prove that any two bases of the same module connected by a unimodular transformation.

(5)

c. Prove the following:

1. $\varsigma'(z) = -\wp(z)$, $\varsigma(z)$, weierstrass zeta function and. $\wp(z)$, Weierstrass $\wp(z)$

function

- 2. $\varsigma(z+w_1)=\varsigma(z)+n_1$ and $\varsigma(z+w_2)=\varsigma(z)+n_2$ where n_1 and n_2 are constants.
- 3. $\sigma(z+w_1) = -\sigma(z)e^{n_1\left(z+\frac{w_1}{2}\right)}$ and $\sigma(z+w_2) = -\sigma(z)e^{n_2\left(z+\frac{w_2}{2}\right)}$ where w_1 and w_2 are periods of Weierstrass \wp function $\wp(z)$ and $\sigma(z)$, sigma function.
- d. Define Weierstrass \wp function and derive an expression of a first order differential equation for Weierstrass \wp function $\wp(z)$. (15)

\$\$\$\$\$\$\$\$