

B.Sc. DEGREE EXAMINATION - **PHYSICS**

FIRSTSEMESTER – APRIL 2017

16UMT1AL01- MATHEMATICS FOR PHYSICS - I

Date: 02-05-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

SECTION A

ANSWER ALL QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Find the n^{th} derivative of $\cos(\alpha x + b)$.
- 2. Show that in the parabola $y^2 = 4ax$, the subnormal is constant.
- 3. Prove that $\frac{e^2-1}{e^2+1} = \frac{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots \infty}{1 + \frac{1}{2!} + \frac{1}{4!} + \dots \infty}$.
- 4. State Cauchy's Root test.
- 5. Find the Laplace transform of $\sin^2 2t$.
- 6. Obtain the inverse Laplace transform of $\frac{k}{c^2 + k^2}$.
- 7. State Cayley-Hamilton theorem.
- 8. Define symmetric matrix.
- 9. What is the chance a leaf year selected at random will contain 53 Sundays?
- 10. Define Binomial distribution.

SECTION B

ANSWER ANY FOUR QUESTIONS.

 $(5 \times 8 = 40)$

- 11. Find n^{th} derivative of $y = \frac{x^2}{(x-1)^2(x+2)}$.
- 12. Find the angle of intersection of the cardioids $r = a(1 + \cos\theta)$ and $r = b(1 \cos\theta)$.
- 13. Examine the convergence of the series $\sum_{0}^{\infty} \frac{n^3 + 1}{2^n + 1}$.

 14. Find the Laplace transform of $f(t) = \begin{cases} 1 & : 0 < t < b \\ -1 & : b < t < 2b \end{cases}$.
- 15. Find $L^{-1}(\frac{1}{s(s+1)(s+2)})$.
- 16. Find the characteristic equation of the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$ and hence determine its inverse.

 17. Two unbiased dice are thrown. Find the probability of getting (i) sum is 8 (ii) atmost the sum is 4 (ii)
- sum greater than 10 (iv) both the dice shows the same number?
- 18. Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age in	20-30	30-40	40-50	50-60	60-70	70-80	80-90
years	2	C1	122	152	140	F4	2
No. of members	3	61	132	153	140	51	2

SECTION C

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

19. (a) If $y = \sin(m\sin^{-1}x)$, prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.

(b) Find the maximum value of $\frac{\log x}{x}$ for positive values of x. (14+6)

20. (a) Sum the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \cdots$

(b) Discuss the convergence of the series $1 + \frac{(1!)^2}{2!}x + \frac{(2!)^2}{4!}x^2 + \frac{(3!)^2}{6!}x^3 + \cdots$ (10+10)

21(a) Using Laplace transform, solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 4e^{-t}$, $y = \frac{dy}{dt} = 0$ when t = 0.

(b) Solve by Cramer's rule: 2x - y + 2z = 2, x + 10y - 3z = 5, x - y - z = 3. (10+10) 22(a) Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$.

(b) Obtain the correlation coefficient for the following data:

_	e e e e e e e e e e e e e e e e e e e										
X	65	66	67	67	68	69	70	72			
Y	67	68	65	68	72	72	69	71			
(10+10)											

(10+10)

\$\$\$\$\$\$\$\$