LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIRSTSEMESTER - APRIL 2017

16UMT1MCO2- ANALYTICAL GEOMETRY OF 2D, TRIG. MATRICES

Date: 21-04-2017

Dept. No.

Max.: 100 Marks

09:00-12:00

PART-A

Answer all the questions

 $10\times2=20$

- 1. Write down the expansion for $\cos^5 \theta$ in terms of θ .
- 2. If $\frac{\sin\theta}{\theta} = \frac{5045}{5046}$, show that $\theta = 1^{\circ}58'$ approximately.
- 3. Prove that $\cos h^2 x + \sinh^2 x = \cosh 2x$.
- 4. Find Log(1-i)
- 5. Find the eigen values of $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$.
- 6. Define the characteristics equation and characteristic values of the matrix A.
- 7. Write down the condition for the lines lx + my + n=0 and $l_1x + m_1y + n_1 = 0$ to be conjugate to each other.
- 8. Define conjugate diameters of the ellipse.
- 9. Find the asymptotes of the hyperbola

$$3x^2 - 5xy - 2y^2 + 17x + y + 14 = 0$$

10. Write down the polar equation of a straight line.

PART-B

Answer any FIVE questions

 $5\times8=40$

1

- 11. Express $\cos 8\theta$ in terms of $\sin \theta$.
- 12. Find $\lim_{\theta \to 0} \frac{\tan \theta + \sec \theta 1}{\tan \theta \sec \theta + 1}$
- 13. If $cos\alpha$. $cosh\beta = cos\phi$, $sin\alpha$ $sinh\beta = sin\phi$, prove that

$$sin\varphi = \pm sin^2\alpha = \pm sinh^2\beta$$
.

- 14. Deduce the expansion of $tan^{-1}x$ in powers of x from the expansion of $\log(a+ib)$.
- 15. Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$.
- 16. Calculate A^4 when $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.
- 17. Find the locus of the poles of all tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4bx$.
- 18. If e, e₁ are the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$

PART-C

Answer any TWO questions

 $2\times20=40$

- 19. a) Prove that $\frac{\sin 6\theta}{\sin \theta} = 32\cos^5\theta 32\cos^3\theta + 6\cos\theta$
 - b) Expand $sin^3\theta cos^5\theta$ in a series of sines of multiples of θ (10+10)
- 20. a) If $cos(x+iy) = cos\theta + isin\theta$, prove that cos2x + cosh2y = 2
 - b) Separate into real and imaginary parts $tan^{-1}(x+iy)$.

(10+10)

- 21. Diagonalise the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.
- 22. a) A tangent of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose centre is C meets the circle $x^2 + y^2 = a^2 + b^2$ at

Q and Q'. Prove that CQ and CQ' are conjugate diameters of the ellipse.

b) Trace the curve
$$\frac{10}{r} = 3\cos\theta + 4\sin\theta + 5$$

(10+10)
