LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - PHYSICS

SECONDSEMESTER - APRIL 2017

16UMT2AL01- MATHEMATICS FOR PHYSICS - II

Date: 27-04-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

SECTION A

Answer **ALL** the questions:

(10x2 = 20)

- 1. Evaluate $\int (ax^2 + bx + c) dx$.
- 2. Find the value of $\int_0^{\pi/2} \sin^6 x dx$.
- 3. State any two properties of definite integral.
- 4. Prove that $\beta(m,n) = \beta(n,m)$.
- 5. Solve $(1-x^2)\frac{dy}{dx} + xy = 5x$.
- 6. Write the criterion for Mdx + Ndy = 0 to be exact.
- 7. Evaluate $\int_0^a \int_0^b xy(x-y) dy dx$.
- 8. Find $\frac{\partial(x,y)}{\partial(r,\theta)}$ when $x = r\cos\theta$ and $y = r\sin\theta$.
- 9. Prove that $\nabla \cdot r = 3$ and $\nabla \times r = 0$.
- 10. State Gauss Divergence Theorem.

SECTION B

Answer any **FIVE** questions:

(5x8 = 40)

- 11. Evaluate $\int \frac{2dx}{(1-x)(1+x^2)}.$
- 12. Establish a reduction formula for $I_n = \int \tan^n x dx$; hence find $\int_0^{\pi/4} \tan^3 x dx$.
- 13. Prove that $\int_{0}^{\pi} \theta \sin^{3} \theta d\theta = \frac{2\pi}{3}.$
- 14. Solve $(D^2 4D + 3)y = e^{-x} \sin x$.
- 15. Solve $x \frac{dy}{dx} + y \log x = e^x x^{1 \frac{1}{2} \log x}$.
- 16. Evaluate $\iint r\sqrt{a^2-r^2}drd\theta$ over the upper half of the circle $r=a\cos\theta$.
- 17. Compute the divergence and curl of the vector $F = xyzi + 3x^2yj + (xz^2 y^2z)k$ at (1,2,-1).
- 18. Prove that $\int_{C} \phi dr = \iint_{S} n \times \nabla \phi dS$.

SECTION C

Answer any **TWO** questions:

(2x20=40)

- 19. (a) Derive the reduction formula for $I_n = \int \sin^n x dx$.
 - (b) Solve $(3D^2 + D 14)y = 13e^{2x}$.

(10+10)

- 20. (a) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
 - (b) Evaluate $\int_{0}^{1} x^{7} (1-x)^{8} dx$ using Beta & Gamma function. (15+5)
- 21. (a) Change the order of integration in the integral $\int_{0}^{a} \int_{x^2/a}^{2a-x} xydxdy$ and evaluate it.
 - (b) Evaluate $\iint (x^2 + y^2) dxdy$ over the region for which x, y are each ≥ 0 and $x + y \le 1$.

(14+6)

- 22. (a) Evaluate $\int \frac{2x+3}{x^2+x+1} dx$.
 - (b) Find by Green's Theorem the value of $\int_C (x^2ydx + ydy)$ along the closed curve C formed by $y^2 = x$ and y = x between (0,0) and (1,1).

(10+10)

\$\$\$\$\$\$\$\$