LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIRSTSEMESTER - APRIL 2017

MT 1502- ALGEBRA AND CALCULUS - I

Date: 18-04-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

SECTION -A

(Answer ALL questions)

 $(10\times2=20)$

- 1. Find the n^{th} derivative of $e^x \sin x$.
- 2. Find the slope of the curve $r = a(1 \cos \theta)$ at $\theta = \pi/2$.
- 3. Write the conditions for the maxima and minima of functions of two variables.
- 4. Write the steps used in Lagrange's method of undetermined multiplies.
- 5. What is the asymptote of a given curve?
- 6. Find the coordinates of the centre of curvature of the curve $y=x^2$ at the point (1/2,1/4).
- 7. Determine the quadratic equation having $\sqrt{2} + 1$ as a root.
- 8. Define reciprocal equation.
- 9. Define Descartes rule of signs for negative roots.
- 10. Show that the equation $x^3 6x 13 = 0$ has one real root between 3 and 4.

SECTION -B

(Answer any FIVE questions)

 $(5\times8=40)$

- 11. If $y = \cos(m \cos^{-1}x)$, show that $(1-x^2)y_{n-2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.
- 12. Find the angle between the radius vector and the tangent for the curve $r^2 = a^2 \cos 2\theta$ at $\theta = \frac{\pi}{6}$.
- 13. Investigate the maximum and the minimum value of $4x^2+6xy+9y^2-8x-24y+4$.
- 14. Find the asymptotes of the cubic $y^3-6xy^2+11x^2y-6x^3+x+y=0$.
- 15. Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin\theta)$ and $y=a(1-\cos\theta)$ is $4a\cos\frac{\theta}{2}$.
- 16. Solve the equation $x^4-2x^3+4x^2+6x-21=0$ given that two of its roots are equal in magnitude and opposite in sign.
- 17. Find the sum of the cubes of the roots of the equation $x^5 = x^2 + x + 1$.
- 18. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $(\alpha^2 + 1)(\beta^2 + 1)(\gamma^2 + 1)$.

SECTION - C

(Answer any TWO questions)

 $(2 \times 20 = 40)$

- 19(a) If $y = e^{msin^{-1}x}$, prove that $(1-x^2) y_{n+2} (2n+1)xy_{n+1} (m^2+n^2) y_n = 0$. (10+10)
 - (b) Find the maxima and minima of the function $f(x,y)=12xy-3y^2-x^2$ subject to x+y=16.
- 20(a) Show that the evolute of the cycloid $x=a(\theta-\sin\theta)$; $y=a(1-\cos\theta)$ is another cycloid.
 - (b) Find the asymptotes of $x^3+2x^2y-4xy^2-8y^3-4x+8y=1$. (10+10)
- 21(a) Show that the roots of the equation $x^3+px^2+qx+r=0$ are in arithmetic progression if $2p^3-9pq+27r=0$. Hence solve $x^3-6x^2+13x-10=0$.
 - (b) Solve the equation $6x^5-x^4-43x^3+43x^2+x-6=0$.

(10+10)

- 22 (a) Solve the equation $x^4-2x^3-13x^2+38x-24=0$ by finding the rational roots.
 - (b) Find the positive root of the equation x^3 $2x^2$ -3x-4=0 correct to 3 places of decimal. (10+10)
