LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - APRIL 2017

MT 1503- ANALYTICAL GEOMETRY OF 2D, TRIG. & MATRICES

Date: 19-04-2017 Dept. No. Max.: 100 Marks

01:00-04:00

PART-A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Write the expansion of $tan n\theta$ in powers of $tan \theta$.
- 2. Expand $\sin^4\theta$ in a series of cosines of multiples of θ .
- 3. Prove that $\cosh^2 x + \sinh^2 x = \cosh 2x$.
- 4. Find $\log(1-i)$.
- 5. Define (a) Singular matrix and (b) Skew symmetric matrix.
- 6. Find A^3 when $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$.
- 7. Show that the perpendicular tangents to a parabola intersect on the directrix.
- 8. State any two properties of conjugate diameters.
- 9. Define rectangular hyperbola.
- 10. Find the distance between the points (r_1, θ_1) and (r_2, θ_2) .

PART - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40 \text{ marks})$

- 11. Expand $\cos^6\theta$ in series of cosines of multiples of θ .
- 12. Evaluate $\lim_{x \to \frac{\pi}{2}} \left(\frac{\sin x + \cos 2x}{\cos^2 x} \right)$
- 13. If $\cos(x + iy) = \cos\theta + i\sin\theta$, then prove that $\cos 2x + \cosh 2y = 2$.
- 14. If $\log \sin(\theta + i\emptyset) = A + iB$, then prove that $2e^{2A} = \cosh 2\emptyset \cos 2\theta$.
- 15. Verify that the following matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation.
- 16. The polar of a point P with respect to the parabola $y^2 = 4ax$ meets the curve in Q and R. Show that if P lies on the line lx + my + n = 0, then the middle point of QR lies on the parabola $l(y^2 4ax) + 2a(lx + my + n) = 0$.
- 17. (a) Find the locus of the middle points of a series of parallel chords of an ellipse. (5+3)
 - (b) When will the tangents at the extremities of a chord intersect on the diameter bisecting the chord.
- 18. Trace the curve $\frac{12}{r} = 4 + \sqrt{3}\cos\theta + \sin\theta$

PART-C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40 \text{ marks})$

19. (a) Prove that
$$\frac{\sin 6\theta}{\sin \theta} = 32\cos^5\theta - 32\cos^3\theta + 6\cos\theta$$
 (10)

(b) Prove that
$$\cos^5\theta \sin^3\theta = \frac{-1}{128}(\sin 8\theta + 2\sin 6\theta - 2\sin 4\theta - 6\sin 2\theta)$$
 (10)

- **20.** (a) If $\cos \alpha \cosh \beta = \cos \emptyset$, $\sin \alpha \sinh \beta = \sin \emptyset$, then prove that $\sin \emptyset = \pm \sin^2 \alpha = \pm \sinh^2 \beta$ (10)
 - (b) Separate into real and imaginary parts $tan^{-1}(x+iy)$ (10)

21. Diagonalize the matrix
$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$$
 (20)

- 22. (a) Show that the locus of the intersection of tangents to $y^2 = 4ax$ which intercept a constant length don the directrix is $(y^2 4ax)(x + a)^2 = d^2x^2$. (12)
 - (b) The asymptotes of a hyperbola are parallel to 2x + 3y = 0 and 3x 2y = 0. Its centre is at (1,2) and it passes through the point (5,3). Find its equation and its conjugate. (08)
