LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

,DEGREE EXAMINATION – **STAT.,PHY.,CHEM., COMP.SCI., & COMP.APP.**

THIRDSEMESTER - APRIL 2017

MT 3206- APPLIED MATHEMATICS

Date: 04-05-2017 09:00-12:00

Dept. No.

PART – A

Answer ALL questions.

 $(10 \times 2 = 20)$

Max.: 100 Marks

- 1. Integrate $x^{3/2}$ with respect to x.
- 2. Define Marginal Cost.
- 3. State any two rules of vector differentiation.
- 4. Find the maximum value of the directional derivative of the function $\varphi = 2x^2 + 3y^2 + 5z^2$ at the point (1, 1, -4).
- 5. Define Ordinary differential equation.
- 6. Write the degree of the following differential equation

(i)
$$y \frac{dy}{dx} = \sqrt{x} \left(\frac{\partial y}{\partial x} \right)^2 + k$$
.

(ii)
$$(y - x \frac{dy}{dx})^2 = k^2 (1 + (\frac{dy}{dx})^2).$$

- 7. Prove that $L\{1\} = \frac{1}{s}$ if s > 0.
- 8. State shifting property in Laplace Transforms.
- 9. Find $L(e^{2t})$.
- 10. Define Spearman's rank correlation coefficient.

PART-B

Answer any FIVE questions.

 $(5 \times 8 = 40)$

- 11. If demand function is $y = 32 4x x^2$, find the Consumer Surplus if $x_0 = 3$.
- 12. If $f(x) = x(x^2 4)^2$, $1 \le x \le 3$. Then prove that

(i)
$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$$

(ii)
$$\int_{-a}^{a} f(x) dx = 0.$$

- 13. A particle moves along a curve whose position vector at any time t is given by $\vec{r} = t^3\vec{t} + (t^2 1)\vec{j} + 4t\vec{k}$. Find the velocity and acceleration at time t = 1.
- 14. Evaluate $\nabla(\log r)$ where $r = |\vec{r}|, \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.
- 15. Find the Laplace transform of $f(t) = \begin{cases} 1 & 0 < t < b \\ -1 & b < t < 2b \end{cases}$
- 16. Find $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$.
- 17. Calculate the coefficient of correlation.

01001011											
	X	1	2	3	4	5					
	Y	10	20	30	50	40					

18. A person walks 27km at a speed of 3 km per hour and again walks 24 km at a speed of 4 km per hour. What is the average speed in km per hour?

PART-C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19. (a) If the marginal revenue function is $R'(x) = 12 8x + x^2$, determine the revenue and demand function.
 - (b) Find the centre of gravity of an uniform lamina in the form of a quadrant of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (8+12)
- 20. Evaluate $\iint_S \vec{F} \cdot \vec{n} ds$ where $\vec{F} = xy\vec{i} x^2\vec{j} + (x+z)\vec{k}$ and S is the plane 2x + 2y + z = 6 in the first octant.
- 21. (a) Solve $\frac{d^2y}{dt^2} 4\frac{dy}{dt} + 5y = 4e^{3t}$ given that y(0) = 2, y'(0) = 7. (b) Find $L(e^{7t} \sin^2 t)$. (12+8)
- 22. (a) In certain culture yeast the amount A of active yeast grows at a rate proportional to the amount present. If the original amount A_0 doubles in 2 hrs, how long does it takes for the original amount to triple.
 - (b) Calculate the standard deviation, coefficient of variation and variance for the following data:

Roll. No.	5	15	25	35	45	55
Marks	10	20	30	50	40	30

(5+15)

\$\$\$\$\$\$\$\$\$