LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRDSEMESTER - APRIL 2017

MT 3812- CLASSICAL MECHANICS

Date: 28-04-2017 09:00-12:00	Dept. No.	Max.: 100 Marks
Answer ALL Questions.		
1. (a) (i) Briefly explain	ain D' Alembert's principle. OR	
(ii) Discuss the motion of a simple pendulum.(b) (i) Derive the Lagrangian equation of motion.		(5)
(ii) Discuss the equation of motion of a compound pendulum. 2. (a) (i) Derive the expression for Hamilton function H. OR		(15)
force.	e Hamiltonian function and Hamiltonian'	s equations for a particle in a central (5)
(iii) Derive the H 3.(a) (i) Explain the Eul	OR amilton's principle of least action. lerian angles. OR	(15)
(ii) Show that $Q = \tan^{-1} \left(\frac{q}{p} \right)$	$\int_{0}^{\infty} P = \frac{1}{2} (p^2 + q^2) \text{ represent a canonical tr}$	ansformation. (5)
(b) (i) State and prove I	nvariant theorem of Poin Care. OR	
(ii) Discuss the motion of a top by Lagrange's method. 4. (a) (i) Show that $[u, vw] = v[u, w] + w[u, v]$. OR		(15)
(ii) If u is a function	of p , q , t , then prove that $\frac{du}{dt} = [u, H] + \frac{\partial}{\partial t}$	$\frac{\partial u}{\partial t}$.(5)
(b)(i) State and prove C	Conservation theorem of angular momentu OR	ım.
(ii)State and prove t	heJacobi's identity.	(15)
•	Ldt + C, where S if the function of motion	n and L the Lagrangian.
	Action-Angle variable. er's problem using Action angle variable.	(5)
(ii) Derive Hamilton	n- Jacobi equation for the Hamilton's cha	racteristic equation. (15)